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APPROXIMATE CONVERSIONS TO SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

in inches 
ft feet 
yd 
mi 
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miles 

LENGTH 
25.4 
0.305 
0.914 
1.61 

AREA 

millimeters 
meters 
meters 
kilometers 

mm 
m 

L 

in2 
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square inches 645.2 
w square feet 0.093 

square millimeters 

Y@ square yards 0.836 
square meters 
square meters 

ac acres 0.405 hectares 
miP square miles 2.59 square kilometers 

fl o?! 
gal 
fP 
Y@ 

NOTE: 

PbL 
T 

“F 

fc 
fl 

fluid ounces 29.57 milliliters 
gallons 3.785 liters 
cubic feet 0.028 cubic meters 
cubic yards 0.765 cubic meters 

Volumes greater than 1000 I shall be shown in rnj. 

mL mL milliliters 0.034 fluid ounces fl 02 
L L liters 0.264 gallons gal 
m3 m3 cubic meters 35.71 cubic feet ft3 
m3 m3 cubic meters 1.307 cubic yards Y@ 

MASS MASS 

ounces 28.35 
pounds 0.454 
short tons (2006 lb) 0.907 

grams 
kilograms 
megagrams 
(or “metric ton’) 

TEMPERATURE (exact) . 

Fahrenheit 5( F-32)/9 Celcius 
temperature or (F-32)/1.8 temperature 

ILLUMINATION 

foot-candles 10.76 lux 
foot-Lamberts 3.426 candela/m* 

FORCE and PRESSURE or STRESS 

Ibf 
Ibfln* 

poundforce 
poundforce per 
square inch 

4.45 newtons N N newtons 0.225 
6.89 kilopascals kPa kPa kilopascals 0.145 

m* 

Ii 
km* 

mm* square millimeters 

VOLUME 

0.0016 square inches 
m* square meters 10.764 square feet 
m* square meters 1.195 

‘ha 
square yards 

hectares 2.47 acres 
km* square kilometers 0.366 square miles 

“C “C 

lx 
ccUm* 

IX 
cd/m* 

SI is the symbol for the International System of Units. Appropriate (Revised September 1993) 
rounding should be made to comply with Section 4 of ASTM E380. 

APPROXIMATE CONVERSIONS FROM SI UNITS 
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fP 
Y@ 
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(or “metric ton”) 

TEMPERATURE (exact) 

Celcius 
temperature 

1.8C+32 Fahrenheit “F 
temperature 

ILLUMINATION 

lux 0.0929 foot-candles fc 
candela/m* 0.2919 foot-Lamberts ft 

FORCE and PRESSURE or STRESS 

poundforce 
poundforce per 
square inch 

Ibf 
Ibf/in’ 
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I 
CHAPTER 1 i 

Introduction 

1.1 Computational Technology for Structural Engineering : f i- 

The primary function of any building or highway bridge structure is support 

and transfer of externally applied loads to the reaction points in a safe and 

reliable manner. In present-day structural design, new structures are often i i 
designed initially on the basis of experience with similar types of structures, 

perhaps using some simple analytical calculation procedures. Subsequent 

versions of the design are progressively detailed and are analyzed using 

numerical methods having a sophistication consistent with the fidelity of 
i 

required performance assessment. The structural design process continues in 

an iterative manner until a satisfactory cost-effective solution is obtained.c3@ 

Structural analysis procedures are concerned with the quantitative assessment r 
of structural performance under prescribed loading and displacement 

conditions. External design loadings and displacement conditions can be static 

or dynamic - it is defined that a load is dynamic when its time-varying 
i 

characteristics have a significant effect on the structural response. The dynamic 

load of greatest importance in this study will be that produced by moderate 

and severe earthquake ground motions. Commonly assessed response quantities 

include distributions of stress, displacement, structural strength, and ductility 

demand ratios. Distributions of stress and displacement give the designer a 

good sense of how the structure will behave under the service load conditions. 

Distributions of strength and ductility demand ratios give the designer a good 

1 : b 
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sense of how individual structural components and the overall structural 

system will behave under extreme loading conditions. For each of these loading 

cases, the computed response quantities provide a basis for assessing how well 

the structural actions can be supported by the structure.f36y52) 

During the early 196Os, soon after high-level programming languages were 

introduced, engineers envisioned the need for computational problem-solving 

environments that would be powerful enough to solve a target class of 

application problems and interact with human users.(ls) When this vision is 

interpreted in the context of design and analysis of building and highway 

bridge structures, computational support is needed for: 

1. The construction of mathematical models of the phenomenon under 

study. 

2. The selection of relevant physics (e.g., constitutive models) and 

structural geometry. 

3. The manipulation of equations and associated conditions, thereby 

allowing suitable simplified solution methods. 

4. The automated construction of test problems and data sets. 

5. The specification of appropriate programming languages and 

problem-solving methods (perhaps from scratch or by modifying existing 

materials). 

6. The application of the program to the test data and validation of results. 

7. The assessment of structural performance, including the collection and 

2 



manipulation of data generated by the structural analyses, and 

comparison of this information with design code regulations. 

8. The communication of results to the scientific community. 

Where appropriate, models should account for natural variations in material 

properties, uncertainties in loading conditions, and inaccuracies in simplified 

modeling techniques. 

Of course new methods are more likely to be accepted if they complement and 

extend time-tested traditional procedures. In this respect, the author notes 

that in traditional approaches to problem solving, engineers write the details of 

a problem and its solution on paper. They use physical units to add clarity to 

the problem description and may specify step-by-step details for a numerical 

solution to the problem. Matrices and linear matrix algebra are an essential 

part of present day structural analysis because they enable problems and their 

solutions to be specified at a relatively high level of abstraction, and because 

linear matrix operations are ideally suited for automatic computation on 

computers. Similarly, the finite element method is an integral part of modern - 
structural analyses. This method is based on the concept that a complex 

system ‘can be modeled by an assembly discrete “elements” whose behavior is 

readily known. A complete solution is obtained by combining the element-level 
i 

displacement or stress distributions in a manner that satisfies the 

force-equilibrium and displacement compatibility conditions for each “node” or 

connecting point of the elements. (52) By harnessing computer power for 

step-by-step solutions to sophisticated matrix and finite element problems, 

engineers can approach these calculations without recourse to simplifying 

assumptions. Units, physical quantities, matrices, and finite element analysis 
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are techniques fundamental to good engineering practice and should be 

incorporated into new computational environments. 

Even though opportunity for these advances was identified in the 1960s the 

primitive state of computing at that time (measured by today’s standards) 

made the implementation of a suitable environment formidable. During the 

past 20 years, however, remarkable advances in computer hardware and 

software have enabled the development of engineering software tools to mature 

to the point where importance is placed on ease of use and a wide-array of 

practical services being made available (i.e., the best computer programs can 

solve a wide variety of problems) to the engineering profession as a whole. 

Computer programs written for engineering computations are expected to be 

fast and accurate, flexible, reliable, checkable, and of course, easy to use.(21) 

Whereas an engineer in the 1970s might have been satisfied by a computer 

program that provided numerical solutions to a very specific engineering 

problem, the same engineer today might require the engineering analysis plus 

computational support for design code checking, optimization, interactive 

computer graphics, network connectivity, and so forth. Many of the latter 

features are not a bottleneck for getting the job done. Bather, features such as 

interactive computer graphics simply make the job of describing a problem and 

interpreting results easier. The pathway from ease of use to productivity gains 

is well defined.@) 

1.2 Modeling and Analysis of Highway Bridge Structures 

During the past three decades, most of the advances in computer-aided 

modeling and analysis of building and highway bridge structures can be traced 
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/  

,  

back in part to advances in digital computing.(11~36~4g) A model is a tool that 

facilitates the mathematical formulation of the geometry and behavior 

characteristics of a prototype system. Structural modeling techniques typically 

assume that the “behavior of the real-world structure” can be captured by 

suitable assemblies of discrete mathematical elements. Various levels of 

i 
;. 

I 

I 
discretization are possible, ranging from very simple spring-mass systems to , 

three-dimensional finite element models that capture nonlinear geometric and 

material behavior. 

To facilitate the design of complex seismic resistant structural systems, recent 

design codes prescribe a series of standard performance levels for seismically 

resistant structures. A performance level is a limiting state of acceptable 

; 

damage for the main structural system, the structure’s contents, nonstructural 

components and utilities. Performance levels are selected based on the safety, 

economic, and societal impacts of damage. The goal of performance-based 

engineering is to define performance objectives for structures of various uses 

and to control the risk associated with each limit-state to a pm-defined level of 

F. 

Analytical procedures are needed for the assessment of structural behavior in a 

manner consistent with expected behavior. Under moderate earthquake 

loadings, for example, a structure should suffer no structural damage. Limited 

nonstructural damage is permitted, however. Since a structure is expected to 

remain essentially elastic, a linear time-history analysis or modal analysis is 

e 

appropriate. Severe ground shaking is assumed to correspond to the maximum 

credible ground motion for the site. The important performance criterion in 

events of this type is assuring that loss of life does not occur. Extensive 
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Figure 1.1: Modeling, Analysis, and Design of Highway Bridge Structures 

structural damage in the form of large plastic deformations is acceptable. 

While the level of damage may be beyond repair, collapse is nonetheless 

prohibited. Analytical procedures should capture the nonlinear behavior of 

systems under these loading conditions. 

Figure 1.1 is adapted from the text of Priestley et al.@j) and summarizes the 

objectives, approaches, and analytical procedures commonly used for modeling 

and analyzing seismically resistant highway bridge structures. A prerequisite to 

the formulation of appropriate models and analysis techniques is an 

understanding of structural dynamics. The latter includes equations of motion 

(i.e., governing differential equations), bridge dynamic response characteristics 
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(i.e., eigenvalue and eigenvector calculations) and numerical solution 

procedures for governing differential equations. (12~14) A good analysis tool will 

provide information on (1) the overall seismic bridge design process; (2) the 

dynamic response of bridge structures under earthquake loads; (3) the 

consequences of inaccuracies in modeling assumptions; and (4) the available 

techniques of modeling and analysis.(35) 

1.3 Literature Review 

Computer-aided structural analysis tools are now an accepted part of standard 

structural engineering practice because they help engineers unravel the basic 

phenomena of real world structural behavior. They contain many of the 

characteristics of general purpose problem-solving environments, as well as 

application-specific techniques that cannot easily be used in other applications 

(e.g., Mathematics and MATLAB(48)).(18) E ar y 1 versions of structural analysis 

and finite element computer programs such as ABAQUS(3), ANSR(30), and 

t 
P  

b 

f 

i 

r 
FEAP(53) were written in the FORTRAN computer language and were 

developed with the goal of optimizing numerical and/or instructional 

considerations alone. These programs offered a restricted, but well 

implemented, set of numerical procedures for static structural analyses and 

linear/nonlinear time-history response calculations. Table 1.1 contains a 

summary of software packages for the seismic analysis of highway bridge 

structures. Most of them can be found on the National Information Service for 

Earthquake Engineering (NISEE) web server.(15) 

Although present-day software packages have increased their capacity to solve 

engineering problems, and handle input/output in a graphical manner, some 
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Table 1.1: Seismic Analysis Software for Highway Bridges 

Software 
ANSR 

MicroSARB 

SEISAB 

NEABS 

ISADAB 

CALANSR 

ASPIDEA 

Developer 
D. P. Mondkar and 
G. H. Powell(30) 
D. Orie, M. Saiidi and 
B. Douglas(33) 

imbsen & Associates, 
Inc. 

J. Penzien, R. Imbsen, 
and W. D. Liu(341 
M. Saiidi, R. Lawver, 
and J. Hart(381 
Pmb Engineering, Inc. 

R. Giannini, 
G. Monti, G. Nuti, and 
T. Pagnoni(20) 

Description 
ANSR is a general purpose computer program for 
static and dynamic analysis of nonlinear structures. 

This program implements procedure 1 of the Applied 
Technology Council (ATC-6) seismic design guide- 
lines for straight regular highway bridges. The ATC-6 
procedure 1 employs the Single Mode Spectral Anal- 
ysis Method (SMSM) for seismic analysis of “regular” 

highway bridges. 
SEISAB is a computer program developed specifically 
for use in designing new structures or for evaluating 
existing structures to determine retrofit requirements. 
The program’s capabilities include the analysis pro- 
cedures specified in the current AASHTO Standard 
Specifications for Highway Bridges and the AASHTO 
Standard Specifications for Seismic Design of High- 
way Bridges. 
NEABS performs nonlinear dynamic analysis of long, 
multiple span bridge systems. 

ISADAB was developed for the transverse inelastic 
analysis of reinforced concrete highway bridges. 

CALANSR is a general purpose structural analysis 
program specifically developed for fully-coupled, non- 
linear seismic analysis. The program can assess ulti- 
mate system capacity through “pushover” analyses 
using specified loading or deformation patterns. 

ASPIDEA (A Program for Nonlinear Analysis of Iso- 
lated Bridges Under Non-synchronous Seismic Ac- 
tion) is a nonlinear dynamic program specifically de- 
veloped for the analysis of isolated bridges, using a 
number of generated accelerograms. 
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problems still remain. For example, physical units are not part of the program a E 
infrastructure. Most engineering analysis packages simply assume that an 

engineer will check that units are applied in a consistent manner. The few 

computer programs that do incorporate physical units handle them at either 

the program input and output stage (i.e., the input and output will be 
Y 

presented and displayed in a certain set of units) or at the physical quantity 

level (e.g., x = 2 in). In practical engineering analysis, however, units can be as 

important as the numerical quantity itself. No computer program has been 

found to be able to systematically integrate units into the definition of physical 

quantities, matrices, and finite element analysis. 

Readability of input files is another problem for many matrix and finite 

element software packages. Frequently the format specifications for input files 

in engineering packages are so cryptic that it is impossible to understand the t p 
purpose of the engineering problem - the latter requires a careful reading of 

the program’s user manual. t 
While these limitations may have been acceptable 20 years ago, the advent of 

modern software engineering tools means that today we can do a much better 

job! For example, many of these problems can be mitigated by moving the 

balance of software development from “compiled programs” to programs that 

are both “compiled” and “interpreted.” Ease-of-use and increased flexibility in 

problem solving and program portability are the main reasons for moving 

towards interpreted languages - MATLAB and Java are two good examples of i 
languages that have these features. While programming languages like 

MATLAB, MathCad, and Mathematics support matrix operations, physical 

units are not incorporated into all computations, and the extension of these 
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environments to finite element computations is non trivial. 

Economics and Difficulty of Software Development: The difficulty in 

following up on the above mentioned hardware advances with appropriate 

software developments is clearly reflected in the economic costs of project 

development. In the early 19’70s software consumed approximately 25 percent 

of the total costs, and hardware 75 percent of the total costs for development 

of data intensive systems. Nowadays, development and maintenance of 

software typically consumes more than 80 percent of the total project costs. 

This change in economics is the combined result of falling hardware costs and 

increased software development budgets needed to implement systems that are 

much more complex than they used to be. See figure 1.2. 

Whereas one or two programmers might have written a complete program 20 

years ago, today’s problems are so complex that teams of programmers are 

needed to understand a problem and fill in the details of required development. 

When a computer program has a poorly designed architecture, its integration 

with another package can be very difficult, with the result often falling short of 

users’ expectations. Let us suppose, for example, that someone wanted to 

interface the finite element package FEAPcsa) with the interactive 

optimization-based design environment called DELIGHT.(gp32~51) Since FEAP 

was not written with interfaces to external environments as a design criterion, 

a programmer(s) faced with this task would first need to figure out how FEAP 

and DELIGHT work (not an easy task) and then devise a mapping from 

DELIGHT’s external interface routines to FEAP’s subroutines. The 

programmer(s) would need the computer skills and tenacity to stick with the 

lengthy period of code development that would ensue. And what about the 
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Figure 1.2: Economics of Software Development and Integration 

result? In our experience, the integrated DELIGHT-FEAP tool would most 

likely do a very good job of solving a narrow range of problems.(7~8~g) Simply 

extending the DELIGHT-FEAP environment to account for a new set of design 

rules might require an indepth knowledge of the program architecture and 

computer programming. Because of these difficulties, the DELIGHT-FEAP 

program would most likely have a short life cycle. These barriers to software 

integration are frustrating because finite element and optimization procedures 

are essentially specialized matrix computations - the disciplines should fit 

together in almost a seamless way. 



1.4 Research Objectives and Design Criteria for ALADDIN 

This research project takes the position that the main barrier to software 

integration is an ad-hoc approach to software tool development in the first 

place. Rather than simply repeat the abov+mentioned “scenario procedure” 

for yet another set of packages, this research project attempts to understand 

the structure matrix and finite element (and optimization and control) 

packages should take so that they can be integrated in a natural way. The 

problem will be investigated by designing and implementing a system 

specification for how a matrix and finite element system ought to work. To 

verify that these ideas will in fact work, the author will use the system to study 

the seismic analysis and performance assessment of highway bridge structures. 

Our research direction is inspired in part by the systems integration methods 

developed for the European ESPRIT Project and by the success of C. 

Although the C programming language has only 32 keywords, and a handful of 

control structures, its judicious combination with external libraries has resulted 

in the language being used in a very wide range of applications. The system 

specification will include@pT5): 

1. A model: The model will include data structures for the information to 

be stored and a stack machine for the execution of the matrix and finite 

element algorithms. 

2. A language: The language acts as an interface between the engineer 

and the underlying computational model. It is a means for describing 

matrices, finite element meshes, and numerical solution procedures. 

3. Defined steps and ordering of the steps: The steps will define the 
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transformations that can be applied to the system components (e.g., 

nearly all engineering processes will require iteration and branching). 

4. Guidance for applying the specification: Guidance includes factors 

such as easy-tounderstand problem description files, documentation, and 

example problems. The last two components have been implemented on 

the ALADDIN web site. 

Using grammatical rules and compiler construction tools based on the work of 

linguist Niam Chomsky, design and analysis concepts are translated into 

mathematical and computational models. Working out the details of language L 

translation requires a combination of design and artistic skills; the new 

environment’s language should be textually descriptive and strike a balance 

between simplicity and extensibility. It should use a small number of data 
i 

types and control structures, incorporate physical units, and yet be descriptive 

enough so that the pencil and paper and problem description files are 

almost the same. A key advantage in designing a software environment around 

a well defined language is that underlying software components must be : 

modular for the system to work. 

The ALADDIN language has a grammar, syntax, and semantics meaningful to 

the structural analysis and design problem solving domain. ALADDIN symbols 

can represent physical quantities, matrices of physical quantities, components 

of finite element meshes, and components of numerical solution procedures. 

The fundamental branching constructs are if and if. . then. . else, and the 

looping control constructs are while O- and for 0. 

Blocks of design and analysis statements are parsed and converted into 

low-level stack machine instructions. As you will soon see, this step is far from 



trivial - the linguistic constructs and generation tools must be powerful 

enough to handle both the geometrical and functional aspects of structural 

analysis/design, and yet, precise so that high-level ALADDIN statements can 

be efficiently mapped to stack machine instructions without ambiguity. 

1.5 Classes and Needs of ALADDIN Users 

ALADDIN is designed for three groups of people: 

1. Graduate students in structural engineering: A graduate student 

might use ALADDIN to solve a structural analysis or finite element 

problem as part of his or her classwork. Some graduate students will use 

ALADDIN as a framework for implementing new finite elements, perhaps 

as part of an advanced class in finite element analysis. 

2. Researchers in structural analysis: ALADDIN provides researchers 

with an environment to test out their new algorithms and finite elements, 

and to freely collect the results (all without writing a whole new program 

or modifying and compiling the source codes). When researchers are 

developing a new numerical algorithm or solution procedure, one problem 

they face is validation. As part of the validation procedure a researcher 

may need to collect, for example, the time variation in plastic energy 

dissipation computed during an earthquake time-history analysis. 

Existing analysis programs provide neither this information nor flexibility. 

Yet with ALADDIN, the required information can be collected and 

processed by simply writing the appropriate statements in the input file. 
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3. Engineering practitioners: Practicing engineers can use ALADDIN 

simply as a units-based calculator, or for the solution of small-scaled 
*- 
P 

analysis problems involving matrix arithmetics, linear matrix equations, 

design rule checking, and so forth. 

It is expected that the people in each of these categories will already have a 

good understanding of engineering analysis procedures. While they may also 

be familiar with programming logic and flow charts, few of them will have the 

skills of professional software developers. That is fine! They are, after all, 

primarily interested in using the software as a problem-solving tool. e.. i- 
From a software point of view, ALADDIN users want a computational 

environment that: I 

t. 

1. Is easy to learn: A good way of making a new programming language 

easy to learn is to deliberately make its syntaxclose to the languages 

with which engineers will already be familiar. Most engineers are familiar 

with one or more high-level programming languages (e.g., FORTRAN, 

BASIC, C, PASCAL). High level scripting languages such as MATLAB 

are also coming into vogue in many areas of engineering. It therefore 

makes good sense to design the ALADDIN language so that its syntax 

i 

will look like one or more of the languages engineers are already familiar. 

2. Supports documentation: Engineers should be provided with the 

mechanisms to document and explain problem descriptions in a flexible 

manner. This strategy of development improves communication among 

members of a design team. 



3. Incorporates physical units: Engineers should be provided with the 

freedom to use a variety of units in their engineering computations. In 

this respect, the ALADDIN environment should verify that the units are 

consistent before proceeding with an arithmetic or matrix operation. 

4. Supports matrix operations: Since matrix operations are the basic 

operations for all structural engineering problems, their operation should 

work automatically in a program. For example, if A and B are previously 

defined matrices, matrix addition should proceed by simply writing 

A+B. 

5. Supports finite element analysis: As already stated, finite element 

analysis is the main analysis method used in structural analysis. It 

should include basic elements for framed structures and some special 

elements for special modeling. The finite element program should be 

capable of dealing with both static and dynamic analysis, in a linear or 

nonlinear regime. 

6. Supports Custom Problem-Solving Procedures : Engineers should 

be provided with the tools to write custom problem-solving procedures in 

the ALADDIN language alone. A knowledge of ALADDIN’s inner 

working should not be required. 

And from an engineering point of view, ALADDIN should provide its users 

with support for: 

1. Modeling of bridge systems at multiple levels of fidelity: For 

example, a engineer may need to model the nonlinear hysteretic 
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2. 

3. 

4. 

5. Different numerical solution procedures for engineering 

properties of a base isolation component using a detailed nonlinear finite 

element analysis. The same engineer may also need to model an entire 

highway bridge system. In this second case, some components of the 

bridge system will be assumed to remain linear elastic, with nonlinear 

behavior being confined to specific elements in the bridge. This problem 

solving strategy provides reasonably realistic estimates of nonlinear 

system behavior without having to work with matrix equations that are 

unnecessarily large. 

Different types of prescribed load: Including static dead and live 

loads, moving live loads, earthquake ground motion accelerograms and 

response spectra analysis. 

Numerical algorithms: They are reliable for structural analyses (i.e., 

they won’t fail to converge midway through a lengthy nonlinear analysis). 

Validation of the structural analysis results: This can take the I 

! form of design code checking, or perhaps energy evaluation in a 

static/dynamic nonlinear history analysis. 

analysis: Such as Newmark method, Wilson-6 method, 
c 

Mode-Superposition method, Newton-Raphson method, etc. 

All of these features should work within a single integrated computational 

environment. 
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1.6 Report Outline 

Chapter 2 contains a detailed description of the architecture and design for 

ALADDIN, with examples explaining what the input looks like and how the 

implementation works. Chapter 3 shows how static linear finite element 

problems can be solved with ALADDIN, and walks through a number of 

examples that incorporate structural analysis solution procedures. Chapter 4 

introduces a special flexibility-based fiber beam-column element originally 

proposed by Filippou et al.. (46) Its implementation in ALADDIN is also 

described. Chapter 5 shows solution procedures for dynamic nonlinear finite 

element analysis with ALADDIN, and introduces the study of strain energy 

calculations. Chapter 6 has an analytical study for the base isolation of 

bridges, and covers the lead-rubber isolator and modeling and analysis of 

isolated bridges. Finally, chapter 7 contains the conclusions of this work and 

suggestions for future research. 
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CHAPTER 2 

Architecture and Design of ALADDIN 

2.1 Introduction to ALADDIN 

ALADDIN is a computational toolkit for the interactive matrix and finite 

element analysis of large engineering structures. In ALADDIN finite element 

computations are viewed as a specialized form of matrix computations, matrices 

are viewed as rectangular arrays of physical quantities, and numbers are viewed 

as dimensionless physical quantities. ALADDIN provides engineers with: 

1. Mechanisms to define physical quantities with units, and matrices of 

physical quantities. 

2. Facilities for physical quantity and matrix arithmetic. 

3. A SI and US units package. Conversion of units may be applied to 

physical quantity constants, physical quantity variables, and matrices of 

physical quantities. 

4. A matrix package. Its capabilities include matrix arithmetic, solution of 

linear matrix equations, and the general symmetric eigenvalue problem. 

5. Programming constructs to control the solution procedure (i.e., branching 

and looping) in matrix and finite element problems. 

6. A finite element mesh generation package. Two- and three-dimensional 

finite element meshes can be created. 



7. A library of finite elements. Currently, the finite element library includes 

elements for plane stress/plane strain analysis, two-dimensional and three- 

dimensional beamkolumn analysis, three dimensional truss analysis, 

plate analysis, and a variety of shell finite elements. 

The target application area for ALADDIN is static and dynamic finite element 

analysis of multi-story buildings and highwa,y bridge structures. The seismic 

analysis of structures because of earthquake loads is of particular interest. 

2.2 Architecture of the ALADDIN Environment 

_--me -_------------_-----. 
I , 
:Gc;uMTEFD;m~ : 

FINK EE&~EYC LIBRARY 

8 t 
: MESH I 

I c-----_--_---------------~ ------------------------- \ ) 
I , 

: SRU’IEGY I ALC-iom FOR : 
\ / 

I I I I 

SYSEMS WTEGRA~OX sYsxEm cowoNEms 

- Design of Language Syntaxad Sytnantks for - Daign of &a suucutres and Jgailhms for 

intqralion of system coqarnu moduie Iii. 

- HundmlsI’Ibaurodr ofl~insallcIicms : knpicmetlmd in c. S-10 low-ilwl inluucdalr 

per ALADDIN soremQlL perslamlKntofC-c*. 

Figure 2.1: High-Level Architecture for ALADDIN 

Figure 2.1 is a schematic of the ALADDIN architecture and shows its three 
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main parts: (1) the input file(s); (2) the kernel; and (3) libraries of matrix and 

finite element functions. 

The main challenge in designing the kernel and input file is in finding a 

language syntax and semantics that will enable a number of disciplines 

involved in a problem-solving procedure to be integrated in a seamless manner. 

To be useful to engineers, the problem description language should be 

reasonably high level and yet precise, perhaps resulting in hundreds/thousands 

of low-level native machine instructions per ALADDIN statement. The second 

part of the program’s architecture design is concerned with the system 

components - on this side of the problem, the main challenge lies in the 

b 

design of data structures and algorithms for the underlying matrix and finite 

element operations that are computationally efficient. As already pointed out 

in chapter 1, a successful implementation requires a seamless integration of 

library components with the kernel and language designs. This necessitates a 

component-language-test software development cycle. New component modules 

associated language features must be throughly tested before they are included 

in an ALADDIN release (verifying that new program components work 

i 

properly can be an extremely time consuming process). 

Figure 2.2 is a second high-level view of the ALADDIN system that emphasizes 

the relationship between an engineer/user and the ALADDIN language, 

components of the ALADDIN kernel, and their communication with functions 

in the matrix and finite element libraries. In a typical problem-solving session, 

an engineer/user will write blocks of ALADDIN language statements in an 

input file. The ALADDIN kernel parses the description statements, identifying 

the names and types of input tokens and then builds up the parser tree for 
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further stack operations. 

To ensure that the tokens are available for further processing, the language 

parser stores them in a hash (a symbol) table. Stack machines are suitable for 

modeling systems that have a finite number of internal configurations or states, 

and whose behavior evolves as a linear sequence of discrete points in time. It 

also constructs an ensemble of low-level stack machine operations (we will 
E 

illustrate these details in a moment). The stack machine then calls and 

executes functions in the stack instructions. The functions include matrix and 

finite element libraries in lowest level of program. Results are then passed back 

to the user after the function calls are complete. 

2.2.1 Problem Description Statements in Input File 

Specific engineering problems are defined in ALADDIN problem description 

files, and solved using components of ALADDIN that are part 

interpreter-based and part compiled C code. It is important to keep in mind 

that as the speed of CPU processors increases, the time needed to prepare a 

problem description increases relative to the total time needed to work through 

an engineering analysis. Hence, clarity of an input file’s contents is of 

paramount importance. In the design of the ALADDIN language, the authors 

attempted to achieve these goals with: 

1. Liberal use of comment statements (as with the C programming 

language, comments are inserted between /* . . . . */); 

” 
k 

* 
i. 
p 
i 

c 

2. Consistent use of function names and function arguments; 

3. Use of physical units in the problem description; and 



4. Consistent use of variables, matrices, and structures to control the flow of 

program logic. 

ALADDIN problem description statements and their solution algorithms are a 

composition of three elements: (1) data; (2) control; and (3) functions.(3g) 

1. Data : ALADDIN supports three data types: “character string” for 

variable names, physical quantities, and matrices of physical quantities 

for engineering data. For example, the statement 

x = 3 cmhec; 

defines a variable called 5” to represent a velocity of 3 cm per second. 

Notice how 3 juxtaposed with cm/set implies multiplication; we have 

hard-coded this interpretation into the ALADDIN language because 3 

cm/set is more customary and easier to read than 3 * cm/set. There 

are no integer data types in ALADDIN. Floating point numbers are 

stored with double precision accuracy and are viewed as physical 

quantities without units. Matrices of physical quantities are a direct 

extension of this feature. For example, the statement 

Y = [0 m, I m, 2 radl; 

defines a (1 x 3) matrix of displacements. Matrix elements ~111 [ll and 

yCl1 121 have units of length, and yC11 [31 has a planer angle rotation. 

Of course, physical quantities can be used in arithmetic calculations, 

logical, and relational operations. For example, let 

x=3cm; 
Y = 5 cm; 
2=7cm; 
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Table 2.1 serves two purposes. First, it summarizes the logical and 

relational operators that can be applied to physical quantities. It also 

demonstrates the application of those operators and their computed 

results. 

Table 2.1: Summary of Logical and Relational Operators 

Operator Description Expression Result i- 
; 

< less than X<Y true 1 
> greater than =>Y false 

; 
r 

<= less than or equal to x <= y true ;. 
; 

>= greater than or equal to x >= y false 
== identically equal to x == Y false 
I- .- not equal to x !=y true 
8585 logical and (xcy> &8c (x<z> true 
II logical or (y>x) I I (y>z) true I 

i 

2. Control : Control is the basic mechanism in a programming language 

for using the outcome of logical and relational expressions to guide the 

pathway of a program execution. 

ALADDIN supports the branching constructs of if and if-then-else, 

and the while and for looping constructs, with logical and relational 

operations being computed on physical quantities. A schematic of 

branching and looping constructs is shown in figure 2.3. Branching and 

looping constructs have one entry and one exit. For example, the for-loop 

has the following syntax: 

c 
P 
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ENTRY ENTRY FALSE EXIT 

TRUE 

BRANCHING CONSTRUCTS LOOPING CONSTRUCTS 

Figure 2.3: Branching and Looping Constructs in ALADDIN 

Syntax Example 

for(initializer;condition;increment)( for( x=lm; x<=5m; x=x+2m )( 
statements; print "x ='I, x, "\n"; 

1 1 

The example generates the output: 

Loop No. x x <= 5 m Output 
1 lm true x=lm 
2 3m true x = 3 m 
3 ‘5m true x=5m 
4 7m false 

The initializer, condition, and increment statements can be zero or 

more statements separated by a comma. Similarly, zero or more 

statements may be located in the for-loop body. You should notice that 

all of the elements in the for-loop statement are dimensionally consistent. 

Execution of the for-loop begins with the initializer statement (i.e., we 

assign 1 m to variable x). The condition statement is then evaluated to 

see if it is true or false. In this particular example, x <= 5m evaluates to 

true and so statements inside the body of the loop are executed (i.e., we 
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I 

:y. 

print out the value of x). When all of the statements inside the for-loop 

body have finished executing, the increment statement is executed (i.e., 

we increase the value of x by 2m) and condition is reevaluated to see if 

P 

another loop of computations is required. For this example, the loop 
a 

cycles continue for four iterations, until the condition evaluates to false. 

At the end of the for-loop execution, the value of x will be 7 m. 

3. F’unctions : The functional components of ALADDIN provide hierarchy 

to the solution of our matrix and finite element solution procedures, and 

are located in libraries of compiled C codes, as shown on the right-hand 

side of figure 2.1. 

Input z FUNCTION - output i 

I 
RETURN TYPE = AXON NAME 

1 
( 

I 
Arg 1 , Arg 2 , . . . . . . . . , kg N ); 
I I 

output Input 

Figure 2.4: Schematic of Functions in ALADDIN 

Figure 2.4 shows the general components of a function call, including the 

input argument list, the function name, and return type. Version 1.0 of 

ALADDIN has functional support for basic matrix and finite element 

operations. For example, the function call 

spectra = Matrix ([20,2lZ; 

c 

P- 

calls the function Matrix to dynamically allocate memory for a 20 by 2 

matrix of physical quantities, and assigns the result to a variable 



spectra. The ALADDIN function Matrix accepts one matrix argument 

as its input, and returns one matrix as the result. 

A key strategy we have followed in ALADDIN’s development is to keep 

the number and type of arguments employed in library function calls 

small. Whenever possible, the function’s return type and arguments 

should be of the same data type, thereby allowing the output from one or 

more functions to act as the input to following function call. More 

precisely, the authors would like to write an input code that takes the 

form 

eload = FxtemalLoadO; 
stiff = StiffO; 

displacement = Solve( stiff, eload 1; 

If ExternalLoad and Stiff 0 belong to application area 1 (e.g., finite 

element analysis), and Solve0 belongs to application area 2 (e.g., 

matrix analysis), then this language structure allows application areas 1 

and 2 to be combined in a natural way. 

These three components are the basic ingredients of ALADDIN 

problem-solving procedures involving matrix and finite element computations. 

Finite Element Input Files : Finite element problems require the 

development of an input file having the following fivepart format: 

START OF INPUT FILE 

/* ---------_----------___I_______ -------- ---- * ---------_-----_--___________I__________----------- 
* A description of the finite element problem goes here... * 
* ------------------------------------------- ------ *, ---------_----------___________I________--------- 
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. . . Part Cl] : Problem specification parameters. 

StartMeshO; 
c 

Part C2I : Generate finite element mesh. Specify section and material ;: . . . 
properties, external loads, and boundary conditions. 

EndMeshO; 

. . . Part c31 
r 

: Describe solution procedure for finite element problem. 
i 

. . . Part 141 : If applicable, check performance of structure against I. 

design rules. 

. . . Part c51 : If applicable, generate arrays of output that are suitable 
for plotting with MATLAB. i 

quit; 
1 

1; 

The information supplied in each part of the input file is as follows: 

1. The problem specification parameters allow an engineer to state whether 

a finite element problem will be two- or three- dimensional, the maximum 

number of degree of freedom per node, and the maximum number of 

1” 

nodes per element. 

2. ALADDIN statements are written for the finite element mesh generation, k 
the definition of section and material properties, the specification of 

external loads, boundary conditions, and for linking finite element degrees 

of freedom. Mesh generation begins and ends with the function calls: 

StartMesh : Allocates the working memory for the finite element data 

structures. 

EndMesh : Loads the information provided in part C21 into the 

finite element data base. 
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3. The problem-solving procedure usually begins with the assembly of the 

global stiffness matrix, external load vectors, and if applicable, assembly 

of a global mass matrix. Specific linear/nonlinear static/dynamic finite 

element problems are solved by inserting the details of a numerical 

algorithm (e.g., Newmark integration, modal analysis, and optimization 

procedures) at this point. 

4. If applicable, the performance of structure is checked against rules from a 

design code. 

5. If applicable, arrays of formatted program output are generated for 

specialized manipulations (see, for example, section 5.2 on energy 

evaluation) and plotting with MATLAB. 

22.2 Architecture of Program Modules 

To develop a modular software, the program architecture is carefully 

partitioned into six modules. Figure 2.5 shows the interfaces and relationships 

among the six modules. They are (1) main module; (2) preprocessor module; 

(3) central control module; (4) matrix module; (5) finite element module; and 

(6) engineering units module. A summary of each module is as follows: 

1. Main module: The main module acts as the entry point for program 

execution. It loads information specified in ALADDIN’s header files into 

the symbol table, directs the source of expected input (keyboard or files), 

and details of command options. Then the main module calls the 

preprocessor module and executes the program. Also during initializing 

the environment, the program loads keywords, constants, finite element 
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Figure 2.5: Architecture of Program Modules 
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analysis information, and built-in functions needed for the command 

language into ALADDIN’s symbol table. 

2. Preprocessor language module: ALADDIN’s preprocessor module 

parses input, and prepares an array of machine instructions that will be 

executed by ALADDIN’s stack machine. The design and implementation 

details for the language will be described in section 2.3. 

3. Central control module: The central control module is composed of a 

stack machine and is the heart of ALADDIN. The design and 

implementation details for the stack machine will be described later in 

section 2.4. 

, 

4. Engineering units module: The engineering units module provides the 

units operations of engineering quantities and matrices for both US and 



SI systems of units. Operations for units conversion are provided, as are 

facilities to turn units operations on/off. The design and, implementation 

details for the physical units will be described in section 2.5. 

5. Matrix module: The matrix module contains functions to allocate 

memory for matrices, to compute basic matrix operations and solutions 

to families of linear equations, and to solve the symmetric eigenvalue 

problem. 

6. Finite element module: The finite element module contains 

ALADDIN’s data structures for finite element analysis, functions for 

finite element analysis, and a library of finite elements. All of these 

details are contained in a base module and an element library module. 

The information needed for the finite element analysis is generated and 

prepared by the base module. The base module also collects and 

assembles results generated by the element library module. The element 

library module has codes to compute element stiffness matrix, mass 

matrix, internal force, and nonlinear response if applicable. These two 

sub-modules transfer the data to each other through the use of working 

arrays. 

2.2.3 Matrix and Finite Element Libraries 

ALADDIN’s built-in libraries widen the program’s problem-solving ability and 

are a big part of making the ALADDIN language extensible. These libraries 

are implemented as compiled C codes. 

The matrix library includes functions for dynamic allocating and printing 
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matrices, transposing and inverting a matrix, substitution and extraction of 

sub-matrices, linear equation solver, eigenvalue/eigenvector problem-solver, 

and other miscellaneous functions. Functions are provided for addition, 

subtraction, and multiplication of matrices, with or without units. For more 

details, see Reference [6]. 

The built-in finite element library includes functions for (a) generation of finite 

element meshes; (b) definition of external loads; (c) specification of boundary 

conditions; (d) specification of section and material properties; and (e) linking 

i 1 

finite element degrees of freedom. To assist the engineer with basic finite 

element computations, built-in functions are provided for the assembly of 

global stiffness matrices, global mass matrices, and external load vectors. The b 

finite element library also provides facilities for querying information on the 

finite element mesh, section and material properties, and the computed 

displacements and stresses. 

Of course, the finite element library also includes a collection of finite elements. i. 

The ALADDIN Version 2.0 finite elements include two-dimensional four-node 

plane stress/plane strain element, two-dimensional two-node frame element, 

threedimensional two-node frame element, three-dimensional four- and 

eight-node shell elements with five degrees of freedom (linear/nonlinear 

elastic-plastic materials), four-node flat shell element with six degrees of 

freedom per node, four-node discrete Kirchoff quadrilateral (DKQ) plate 

element, two- and three-dimensional two-node fiber beam/column element 

(linear/bilinear elastic-plastic materials). Each finite element has a source code 

to compute element stiffness and mass matrices, plus for a given displacement 

vector, a vector of internal forces acting on the nodal degrees of freedom. 
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2.3 Language Design and Implementation 

A key design objective for ALADDIN is the development of a program 

structure that is very modular. We have captured this principle by designing 

the program architecture, and supporting software modules, around a 

“language grammar” and a compiler construction tool called YACC (short for 

Yet Another Compiler Compiler).(22) YACC takes a language 

description/grammar and automatically generates C code for a parser that will 

match streams of input against the rules of the language using a lookahead left 

recursive (LALR) strategy. In ALADDIN, the details of the YACC grammar 

and associated C code are located in a four-part file called grammar.y. The 

four parts are: 

xc 
Part 1: Optional C statement, declaration; 

%3 
part2 : YACC declarations, lexical tokens, grammar variable, 

precedence and associativity information 
%% 

part3 : Grammar rules and semantic actions 
%% 

part4 : Lexical analysis with a C function called yylexo. 

In part 4 of the YACC specification, there is a C function called yylex0 to 

scan streams of input and identify the name and types of tokens. Black spaces, 

tabs, and all input between comment statements is automatically removed 

from the input. Numbers must begin with either a digit of a decimal point, and 

they are temporarily stored in ALADDIN’s symbol table. Character strings are 

enclosed within quotes (i.e., “ . . . . “)., V aria bl es and built-in function names are 

alphanumeric strings that must begin with a character - the details of 

keywords in ALADDIN’s programming language are stored in the symbol table 
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(see figure 2.2). 

YACC takes the specifications in parts I to 3 of grammar.y, and generates a 

C code function called yyparse0 for: (a) the matching of tokens and their 

types against the grammatical rules of the language; and (b) the handling of 

semantic actions. 

The ALADDIN Version 2.0 language employs 134 grammatical rules for the 

identification of dimensions, physical quantities, matrices, program control of 

flow statements, ‘and so forth. Exact details of the grammar can be examined 

by downloading the grammar.y file from the ALADDIN web site. To see how 

this process works in practice, consider the problem of parsing the input 

statements: 

x = 2 in; 
47 =- 5 in + x; 

For the x = 2 in statement, the sequence of parsing operations is as follows: 

1. The YACC parser recognizes that the whole input statement is a type 

“stmt” with the final result of type “quantity.” 

2. The parser recognizes that “quantity” (from step 1) is a combination of a 

variable x with token name VAR, an assign operator =, and a quantity 2 

in of type “quantity.” The grammatical rule for assignment (i.e., 11=11) 

has right associativity, meaning that tokens to the right of the = will be 

handled before the result is assigned to x. k. 
B 
* 

3. The parser recognizes that 2 in is a quantity composed of a number 2 

with token name NUMBER and a units dimension in of type 

“dimensions.” 
i 



1 1 
VAR VAR 

I I 

Figure 2.6: Parser Trees for x = 2 in and y = 5 in + x 

4. The parser recognizes that in is a dimension. It has the token name 

DIMENSION. 

The relationship among these components and steps is summarized by the 

parser tree in the upper half of figure 2.6. 

For the y = 5 in + x statement the parsing sequences are basically the same 

as in the preceding paragraph. The resulting parser tree is shown in the lower 

half of figure 2.6. Because YACC rules are recursively defined, 5 in + x is 

matched by: 

quantity : quantity '+) quantity { Code( QuantityAdd ); ) \ , . d * 
Syntactic rtble Semantic action 
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This syntactic rule basically says that if the input stream includes a quantity, 

an arithmetical operator “+“, and another quantity, then the result is , F 

recognized as a quantity. The appropriate semantic actions are specified 

inside the braces (} following the rule. In this particular case, the C code 

located inside the function Quantity-Add0 generates the appropriate 

operations for the stack machine. 

2.4 Stack Machine for Central Control 

The data and control components of ALADDIN are implemented as a 

finite-state stack machine model, which follows in the spirit of work presented 

by Kernighan and Pike.(23) 

The purpose of figure 2.7 is to show how the stack machine is constructed from 

three connected data structures: an array of machine instructions, a program 

stack, and a symbol table. Each rule in the ALADDIN grammar has a 

semantic action that generates zero or more low-level stack machine 

instructions. Commonly used stack machine instructions include pushing and 

popping data to/from the program stack, retrieving data from the ALADDIN 

hash table, calling a function in the matrix/finite element libraries, and so 

forth. Each ALADDIN statement (or block of statements) generates a 

sequence of semantic actions that results in the construction of an array of 

stack machine instructions (see the upper left-hand corner of figure 2.7. Note P 
k 

that because the underlying parsing algorithm is LALR, the stack machine 

array contains instructions beginning with the last rule parsed, and finishing 

with the first rule identified. 

In phase two of the statement processing, the stack machine walks along the 
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Each anay elemeot is a noion containing r-r pointers toQuantities and Mauices, aad 

ARRAY OF MACHINE lNSI’RUClTONS I. 
V 

STACK DATA STRUCTURE 

. z Symbol 1 -* Symbol 2 -- Symbol 3 

0 

in the Symbol Table 

Data 2 .-- Matlix 

Data 3 

0 

-Y--,-, 1 

I 
-I 

I 

r-----l 
I I 

I I 

I 
I 

_--we- 

Pointer to Material Pmpflties Double Precision Constants 
- Symbol 4 

Pointer to Section Propelties Character Strings 

Pointer to functiom Finite Element Attributes 

Pointers to Quaotities / Matrices ALADDIN Language Keywords 

SYMBOL TABLE CONTENTS OF SYMBOL TABLE NODES 

Figure 2.7: Data Structures in ALADDIN’s Stack Machine 

array of machine instructions and executes the functions pointed to by the 

machine instructions. These functions will retrieve matrices and physical 

quantities from the symbol table, and push copies onto the program stack (see 

the upper right-hand side of figure 2.7). The pop and push operands of the 

program stack follow a last-in-first-out rule. When the stack machine has 

finished executing the array of instructions, the program stack will be empty. 

Example of Machine Stack Execution : We now demonstrate use of the 

stack machine by working step-by-step through the details of processing the 

assignment x = 2 in;. At the conclusion of the statement parsing phase, the 

variable x (of undetermined data type) will have been added to the symbol 
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pc=pc+I - 
Push3ime~sion() : Push “in” onto data st&. 

( Inst ) Push-Constant 

(Ina) - 
Name : “in” 

( Ins ) Dimension-Eval Name: “in” Type: us 
( Inst ) Push-Variable Type: scale : 1.0 
( Inst ) uvalue 

(Inst) Assign-Quantity u.q->dimen *- UNITS DATA STRUC’TURE 
( Inst) Pop .., . . . . . . . 

( lost ) STOP 

SYMBOL TABLE NODE 

ARRAY OF MACHINE E’lSTRUCnONS 

dl 

t Name : “in” 

Type: us 

QUANTITY DATA STRUCTURE scale : 1.0 

UNn-S DATA STRUCTURE 

I 
STACK DATA STRUCKIRE 

Figure 2.8: Step 1 - Push Unit onto Stack 

table, and the array of machine instructions will contain the items shown on 

the top left-hand side of figure 2.8. The step-by-step procedure for execution of 

the stack machine is: 

k. /- 
i. 
i” 
c 

1. Push symbol table pointer onto stack for the variable in. 

2. Push a constant 2 onto the stack. 

3. Pop both 2 and in off the stack, and combine them into a single quantity 

2 in. The quantity is pushed back onto the stack. 

4. Push onto the stack, the symbol table pointer to variable x. 

5. Pop x and 2 in from the stack. Assign 2 in to x and push x back onto 

the stack. 

6. Data x is popped and cleared from the stack. 
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(Inn) FushDimension 
~nsh-Constanr() : Push “2” onto stack 

(lost) 
pc- 1 - (lost) Rlsb~Constaot e 

pc=pc+l - (mst) e- Symbol 2 - Name: 

( 1-m ) DimensiooZd Type: NUMBER Type : US~Sl 

( Inst) Push-Variable Type: scale : 1.0 

( Ins1 ) u.va1ne : 2 

( Ins1 ) AssigD~Quanlity 
1 

u.q->dimen *- LWTS DATA STRUCTUPJZ . . . . . . . . . . . . . . 
SYMBOL TABLE NODE 

ARRAY OF MACHINE INSTRUCTIONS 

Type: US 

QUANTITY DATA STRUCXJRE scale : 1.0 

d2 UNlTS DATA STRUCWRE 
* 

PC-1 
pc=pe+ 

STACK DATA STRU(JTURE 

Figure 2.9: Step 2 - Push Number onto Stack 
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( Inst ) 
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f Ins, > 
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I I 
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-----I,- 

STACK DATA S’IRUCTURE 
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Figure 2.10: Step 3 - Combine Number and Unit into Quantity 



Figures 2.8 to 2.10 show the relevant details of the machine array, symbol 

table, and program stack for steps 1 to 3 of the execution procedure. The 

step-by-step procedure is handled by the C function Execute(); 

int Execute( Inst *p > ( 
for(pc = p; *PC != STOP; > ( 

PC = pc+l; 
if( Check-Break0 ) break; 
(*(*(pc-l)>)O; 

1 
1 

pc is a program counter that points to elements in the array of machine 

instructions, as shown in figures 2.8 to 2.10. The elements of the machine array 

are pointers to C functions that implement the stack operation tasks. The 

arrows represent the two stages of pc positions. As shown by the upper arrow 

in figure 2.8, the program counter pc initially points to (Inst) 

PushDimensionO. You should notice that the program counter pc is 

incremented to the lower arrow position (pc = pc+l) before PushDimension is 

called. Now (PC-1) points to (Inst) PushDimensionO, and the new value of i i 
pc (lower arrow position) points to a quantity stored in the symbol table (i.e., 

the units dimension in of the input statement). PushDimension allocates 

memory for a new quantity and assigns pc to the base address. After the unit 

of the quantity has been copied to the newly allocated block, the new quantity 

is pushed onto the program stack. After the function PushDimension has 

completed its execution, the program counter pc is increased to point to the i 
%;w 

next function Push-Constant 0. 

The Push-Constant 0 function extracts the value of quantity 2 from the 

symbol table, stores it in a new quantity, and pushes the copy onto the 



program stack (see dl and d2 on the stack shown in figure 2.9). The program 

counter pc is then incremented to point at DimensionEvalo. 

DimensionJZvalO pops dl and d2 from the stack, assigns the units dimension 

in in dl to the quantity d2 The result, 2 in, is pushed onto the program stack 

(i.e., d), as shown in figure 2.10. 

Next, the symbol table pointer for variable x is pushed onto the program stack 

by the C function Push-Variableo. The C function Assign-Quantity0 

assigns the quantity 2 in to variable x, and the result is stored in the symbol 

table. The new x is pushed onto the program stack. The second-to& 

machine instruction pops the last item (i.e., the variable x having value 2 and 

units dimension in) from the program stack. Finally, (Inst> STOP, halts the 

looping mechanism in C function Execute 0. 

2.5 Physical Quantities in ALADDIN 

A physical quantity is a measure of some quantifiable aspect of the modeled 

world. In structural engineering circles, basic engineering quantities such as 

length, mass, and force are defined by a numerical value plus physical units. 

Systems of physical units enable quantities to be expressed in a number of 

ways. For example, a certain length can be measured in terms of meters, 

inches, and feet. All three sets of units have the same dimension, with the 

numerical value of the physical quantity differing only by a scale factor. While 

a conversion between different dimensions is not possible, a conversion of units 

of the same dimension only requires a proper scaling. 
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Figure 2.11: Primary Base and Derived Units in Structural Analysis 
1 

2.5.1 Physical Units 

Figure 2.11 is a schematic of the primary base units, supplementary upits, and 

derived units that occur in structural analysis. This diagram is a subset of 

units presented in the Unit Conversion Guide.c4) Derived units are expressed 

algebraically in terms of base and supplementary units by means of 

multiplication and division. Some of the derived units have special names that 

may themselves be used to express other derived units in a simpler way than in 

base units. 
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ALADDIN’s engineering units module supports operations on engineering 

quantities and matrices for both US and SI systems of units. A physical 

quantity as an “unscaled value” with respect to a set of reference units, and by 

default, all quantities are stored internally in the SI units system. Basic 

engineering quantities such as length, mass, and force, are defined by a 

numerical value plus physical units. The four basic units needed for engineering 

analysis are the length unit L, the mass unit M, the time unit t, and the 

temperature unit 2’. In the SI system of units, meter, “m,” is the reference for 

length, kilogram, “kg,” for mass, second, “set,” for time, and “degC” for 

temperature. Planar angles are represented by the supplementary base unit 

rad. Any engineering unit can be obtained with the following combinations: 

unit = kLQMb7T” . rad” (2-l) 

where a, p, y, 6 and E are exponents, and Ic is the scale factor. For units of 

length and mass, the family of exponent settings [CX, ,8, y, 4, E] are [1, 0, O,O, 0] 

and [0, 1, 0, 0, 01, respectively. Numbers are non-dimensional quantities, and 

given by the family of zero exponents (i.e., [a, fl, y, 6, E] = [0, 0, 0,0, 01). 

Arithmetic Operation with Units : In addition to providing clarity for 

problem input and output for engineering applications, the integration of units 

into arithmetic operations on physical quantities provides a powerful check for 

the dimensional consistency of formulas. Put another way, ALADDIN enables 

units to be carried along its computations. They act like variables obeying 

associativity and commutativity, and laws of exponents. Units are compatible 

if they represent equivalent physical quantities, which means that the values of 

all units exponents are the same. In fact, many improperly formed expressions 
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can be identified without an in-depth knowledge of the problem background. 

Conversions between different but equivalent sets of units is performed 

automatically. Units of the same dimension are chosen freely, and differ only 

by their scale. Scale factors are needed to convert units in US to SI, and vice 

versa. All quantities in US units must be converted into SI before they can be 

used in calculations. 

The main advantage in defining the unit’s data structure by equation 2.1 is 

that we can easily compute the arithmetic operation involving units. To see 

how this works in practice, let 41 be a physical quantity with unit scale factor 

ki, and unit exponents [al, ,&, yi,Sr, ei]. And let 42 be a physical quantity with 

unit scale factor k2, and unit exponents [a~, ,& “/2,&, 4. The logical and 

relational comparison operations of two physical quantities q1 and q2 (i.e., 

41 = a, ql # q2, 41 < a, 41 > q2, 41 2 a, 41 L q&an proceed only if the units 

of q1 and q2 are equivalent. A units compatibility check is made before the 

operation proceeds. The same units checking is also required for addition and 

subtraction operations. 

For addition and subtraction of physical quantities the unit of the result 

depends on the unit types of the operands. If the operands all have the same 

units type (e.g., let us say all are SI or US type), then the result units will be 

set according to the first operand. If the operands have different units type, 

then the result units will be set according to the operand which has the same 

units type as the environmental units type. When there are more than one 

operands which have the same units type as the environmental units type, the 

first one will be the basis for the result units. The default environmental units 

type is SI. It can be switch to US type in the input using function 



SetUnitsType 0. 

Table 2.2: Physical Units in Arithmetic Operation 

Description Expression Scale Factor Unit Exponents 

Multiplication Ql * 42 h - k2 [~1$-~2,Pl+P2,n+~2,~l+b2,~l+~2] 

Division 41/42 h/k2 [ffl - a2,P1 -P2,71 -Yz,b - J22,e -41 

Modulus q&22 h/h [a - (Y2,Pl -pz,r1 -rz,& -&22,E1 - e21 

Exponential Ql ?I2 kNt 1 [Ncrl,NPl,Nrl,N61,NEllt 

j N isthevalueofqz. 

1. The expression of modulus only makes sense when the values of both operands are 
integers. 

2. The expression of exponential only makes sense when q2 is dimensionless. 

Table 2.2 shows the result units in other arithmetic operations, including 

multiplication, division, modulus, and exponential. 

2.5.2 Matrices of Physical Quantities 

The units for elements in a matrix are stored in two one-dimensional arrays of 

data type DIMENSIONS. One array stores column units, and the second array 

row units. The units for matrix element at row i and column j is simply the 

product of the i * element of the row units buffer and the jth element of 

column units buffer. For example, a 4 x 4 matrix “stiff’ having the row and 

column buffers is shown in figure 2.12. 

The units for matrix element stiff [il Cjl are defined by the product of units 

at the ith and j * locations of the row and column units buffers. This strategy 

for storing units not only requires much less memory than complete 

element-by-element storage of units, but it reflects the reality that most 
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Figure 2.12: Matrix with Units Buffers 

engineering matrices are in fact, convenient representations of equations of 

motion and equilibrium. The units of individual terms in these equations must 

be consistent. 

Matrix Addition/Subtraction : To illustrate the application of matrix 
f 

operations with units, let A be a (2 x 2) stiffness matrix with row units buffer [ 

m, ] and column units buffer [N, N/m]. And let B be a (2 x 2) matrix with 

row units buffer [ cm, ] and a column units buffer [kN, kN/cm]. A missing 

item in the row/column units buffers means the corresponding units 

component is dimensionless. The units for matrix elements (A),, and (B),, are 

k 

m * N and cm * kN, respectively. / 
Now let matrix C be the result of A f B. The units of the output matrix C 

will be the same as A or B, depending on which one is the first operand (see 1 
figure 2.13). However, before the matrix operation can proceed, the units of A i 

and B must be checked for their compatibility. The matrix dimensions must be 

checked for consistency. 
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Matrix Multiplication : The handling of units in the multiplication of two 

dimensional matrices needs special attention. Let A be a (JJ x 4) matrix with 

row units buffer [ al, as, - - - , aP ] and column units buffer [ br, b2, - - *, J3, ]. And 

let B be a (a x T) matrix with row units buffer [ cl, ~2,. - -, cn ] and a column 

units buffer [dr , da, - - 6 , d,]. The units for elements (A)ik and (B)kj are ai * bh 

and ck * dj, respectively. Moreover, let C be the product of A and B. From 

basic linear algebra we know that (C), = Aik * Bkj, with summation implied 

on indices k. The units accompanying (C), are aibk * Ckdj for k = 1, 2, . . . . g. 

Because of the consistency condition, all of the terms in & Aik * Bkj must 

have same units. This check is made for every element in the matrix (i.e., 

aiblcldj = ai62c2dj = . . . = aibqcqdj). The units for Cij are Gblcldj. The units 

buffers for matrix C are written as a row units buffer [ arci, a2c1, - Q - , apci 1, and 

a column buffer is [ dlbl, dzbl, - - . , &bl 1. This arrangement of units exponents 

is grap;hically displayed in figure 2.14. It is important to notice that although 

the units for matrix C are unique, the solution for the units buffers is not. 
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Figure 2.13: Units Buffer Addition/Subtraction of Two Matrices 
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CHAPTER 3 t 

i 

i 

Procedures for Linear Static Structural Analysis 

1. I( c 
3.1 Specifications of Finite Element Mesh / 

i 

This section briefly describes ALADDIN’s capabilities for finite element mesh 

generation, including addition of nodes and elements, specification of section 

and material properties, external loads, and boundary conditions. 

3.1.1 Problem Specification Parameters 

ALADDIN’s specification parameters are used for the allocation of memory for 

the finite element mesh. 

i. 

: 

Short Example : In this short example, the problem specification parameters 

are initialized for a three-dimensional structural analysis that uses an 

eight-node shell finite element. 

* 
NDimension = 3; / 
NDofPerNode = 5; : 
MaxNodesPerElement = 8; /* . . . . etc . . . . . */ 1; 

3.1.2 Adding Nodes and Finite Elements 
I 

Two functions, AddNode 0 and AddElement 0, are employed for the generation 

of finite element nodal coordinates, and the attachment of finite elements to 

the nodes. F 
b 

Short Example : 
t 

Figure 3.1 shows a two-dimensional coordinate system, and 
r 

p 
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a line of six finite element nodes connected by two-node beam finite elements. 

The nodes are located at y-coordinate = 1 m, and are spaced along the x-axis 

at 1 m centers, beginning at x = 1 m and finishing at x = 6 m. 

, I I I I I u 
I 1 I I , zw 

1 2 3 4 5 6 x (4 

Figure 3.1: Line of Nodal Coordinates and Beam Finite Elements 

ALADDIN’s looping constructs are ideally suited for specification of the finite 

element nodes in a compact manner, and for the attachment of the two-node 

finite elements. For example, the fragment of code: 

print "*MC Generate grid of nodes for finite element model \n\n"; 

nodeno = 0; 
x=lm;y=lm; 
while(x <= 6 m) < 

nodeno = nodeno + 1; 
AddNode(nodeno, cx, ~1); 
x=x+lm; 

3 

print "f** Attach finite elements to nodes \n\n"; 

elmtno = 0; nodeno = 0; 
while(elmtno < 5) < 

elmtno = elmtno + 1; nodeno = nodeno + 1; 
AddElmt( elmtno, [nodeno, nodeno + II, "name-of-elmt-attr"); 

3 

generates the one-dimensional mesh shown in figure 3.1. In the first half of the 

script, six nodal coordinates are added to ALADDIN’s data base. The second 

block of code attaches five elements to the nodes. You should notice how we 
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have used the notation [nodeno, nodeno + II to generate (1 x 2) matrices 

containing the node numbers to which that elmtno will be attached. 

3.1.3 Material and Section Properties 

The element, section, and material type attributes are specified with three 

functions, ElementAttr 0, SectionAttr 0 and MaterialAttr 0, followed by 

parameters inserted between braces {s s -1. A list of the section and material 

property parameters can be found in reference [6]. 

Short Example : The following script loads a finite element attribute called 

“floorelmts” into ALADDIN’s data base. 

ElementAttr("floorelmts") C type = "FRAME-2D"; 
section = "floorsection"; 
material = "floormaterial"; 

3 

SectionAttr("floorsection") ( Ixy = I m-4; 
IYY = 2 m-4; 
Ixx = 3 m-4; 
122 = 0.66666667 m-4; 
depth = 2 m; 
width = 1.5 m; 

3 

MaterialAttr("floormaterial") ( E = lE+? kN/m-2; 
density = O.l024E-5 kg/m^3; 
Poisson = 1.0/3.0; 
yield = 36000 psi; 

3 

The “floorelmts” attribute has three components - the finite element type is 

set to F’RAME2D, for two-dimensional beam column finite elements. The 

element’s section and material properties are defined via links to the section 

attribute “floorsection” and the material attribute “floormaterial.” 



3.1.4 Boundary Conditions 

Boundary conditions are applied to a structure using the FixNode 0 function. 

FixNode 0 has one matrix argument containing one row, and a number of 

columns equal to the number of degrees of freedom at the node. A matrix 

element value of 1 means that the corresponding degree of freedom is fully 

fixed. A matrix element value of 0 means that the corresponding degree of 

freedom is free to move. 

Short Example : This script fixes the boundary conditions of a finite element 

mesh at nodes 1 through 5. 

dX= 1; dy = 1 ; dz = 1; 
rx = 0; ry = 0 ; rz = 0; 

bcond = [ dx, dy, dz, rx, ry, rz 1; 

for( iNode = I; iNode <= 5; iNode = iNode + 1 ) ( 
FixNode ( iNode , bcond >; 

3 

We have used the variables dx, dy, and dz to represent translational 

displacements in the x, y, and z directions, respectively, and the variables TX, 

xy, and rz for rotational displacement about the x, y, and z axes. Now nodes 1 

through 5 are fixed in their translational degrees of freedom, and pinned in the 

three rotational degrees of freedom. 

3.1.5 External Nodal Loads 

Externally applied nodal loads are specified with the function 

NodeLoad (nodeno, load-vector) ; . 
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Short Example : The following script adds two translational forces, and one 

moment to nodes 1 through 5 in a two-dimensional finite element mesh. 

FxMax= 1000.0 lbf; Fy = -1000.0 lbf; Mz = 0.0 lb+in; 

for( iNode = 1; iNode <= 5; iNode = iNode + 1 ) ( 
Fx = (iNode/5)*FxMax; 
NodeLoad( iNode , C Fx, Fy, Mz I); 

1 

Externally applied loads in the x-direction are 200 lbf at node 1, and increase 

linearly to 1000 lbf at node 5. A gravity load of Fy = -1000 .O lbf is applied 

to each of the nodes 1 through 5. 

3.2 Generation of Mass and Stiffness Matrices 

After the details of the finite element mesh have been fully specified, the next 

step is to calculate the finite element properties and assemble them into an 

x 

“- 

equilibrium system. For structural finite element analysis, this step involves 

calculation of the stiffness and mass matrices, and an external load vector. 

Short Example : In the following script of code, mass is the global mass 

matrix, stiff is the global stiffness matrix, and eload is a vector of external 

nodal loads applied to the finite element global degrees of freedom. 

mass = Mass(Cl1); /* 111 : lumped mass, C-11 : consistent mass */ 
stiff = StiffO; 
eload = ExternalLoad{); 

t 

Note that the three functions Mass{), Stiff 0, and ExternalLoad should 

be called only after the function call to EndMesh . 
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3.3 Solution of Linear Matrix Equations 

After the finite element mesh has been generated, and the mass, stifEness , and 

external load matrices have been assembled, the next step in the structural 

analysis is solution of the linear matrix equations 

where [A] is a (n x n) square matrix, and {z) and {b) are (n x 1) column 

vectors. For a linear structural analysis [A] will correspond to the stiffness 

matrix, {b) will be the vector of externally applied nodal loads, and (5) will be 

the vector of nodal displacements that needs to be computed. 

Generally speaking, the computational work required to solve one or more 

families of linear equations is affected by: 

1. The size and structure of matrix A; 

2. The computational algorithm used to compute the numerical solution; 

and 

3. The number of separate families of equations for which solutions are 

required. 

Figure 3.2 summarizes four pathways of computation for the solution of linear 

equations [A] {z) = {b}. Wh en matrix A is is either lower or upper triangular 

form, solutions to [L] {x) = {b} can be computed with forward substitution, 

and solutions to [U] {x} = {b} via backward substitution. Algorithms for 

forward/backward substitution require O(n2) computational work. The 

method of Gauss Elimination is perhaps the most widely known method for 

solving systems of linear equations. In the first stage of Gauss Elimination, a 
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Figure 3.2: Strategies for Solving [A] (2) = (b} 

set of well defined row operations transforms [A] (z} = (b} into [U] (z} = {b*}. 

In the second stage of Gauss Elimination, the solution matrix x is computed 

via back substitution. The first and second stages of Gauss Elimination require 

O(n3) *and 0 (n2) computational work, respectively. 

When solving the families of equations [A](x)= {b} many times with different 

right-hand side vectors b, for example, in figure 3.2, {br}, {bs), and (b3) 

represent three distinct right-hand sides to [A](x)= (b), the optimal solution 

procedure is to first decompose A into a product of lower and upper triangular 

matrices (requiring O(n3) computational work), and then use forward 

substitution to solve [L] {x} = (b}, followed by backward substitution for 

[U] {z} = {x) (this step requires O(n2) computational work). While solutions 



to the first set of equations requires O(n3) computational work, solutions to all 

subsequent families of [A](x) = (b} re q uires only O($) computational work. 

The solutions to linear equations can be computed with the single command 

x = Solve(A, b). 

The ALADDIN function Solve0 computes the solution to a single family of 

equations via the method of LU decomposition. The numerical procedure is 

identical to the twocommand sequence 

LU = Decompose(A); 
X = Substitution(LU, b). 

LU decomposition can be used to solve a family of equations with different 

right-hand side vectors b. For example: 

LU = Decompose(A); 
Xl = Substitution(LU, bl). /* Solve [A].xl = bl */ 
x2 = Substitution(LU, b2). /* Solve [Al-x2 = b2 */ 
x3 = Substitution(LU, b2). /* Solve [A].x3 = b3 */ 

The following section contains two numerical examples that demonstrate how 

the solution of matrix equations applies to the analysis of highway bridge 

structures. 

3.3.1 Three-Dimensional Analysis of a Highway Bridge 

This example illustrates the linear elastic three-dimensional analysis of a 

two-span highway bridge using a four-node shell element. The highway bridge 

will be analyzed for two loading conditions. First, we compute the deflections 

of the bridge caused by gravity loads alone, and in part two, the moving live 

load diagram generated by a truck moving across the bridge. 
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A plan and front elevation view of the highway bridge is shown in figure 3.3. i 
The bridge has two spans, each 100 ft long. The width of the bridge is 16 ft - 8 

inches. A cross section view of the bridge is shown in figure 3.4. 

A detailed description of the material properties can be found in Austin et 

EL.@) The left-hand side of the bridge has a hinged support boundary 

condition. The right-hand side of the bridge is supported on a roller. The finite 

i 

element model has 399 nodes and 440 shell elements. After the boundary 

conditions are applied, the model has 2374 d.o.f. 

Static Dead Load Analysis : In part one of analysis, we conduct a static 

analysis with dead load alone. The abbreviated input file is: 

ABBREVIATED INPUT FILE 

. . . . . . details of parameter definition o..... 

StartMeshO; 

. . . . . . details of mesh generation 1 . . . . . . 

EndMesh(); 

/* Compute stiffness matrix and external load vector */ 

/ L 
;. 
8‘ 

eload = EkternalLoadO; 
stiff = Stiff(); 

/* Compute and print static displacements */ 

displ = Solve( stiff, eload); 

/* Print analysis results and quit program */ 

PrintDispl(disp1); 
PrintStress(disp1); 
quit; 

Figures 3.7 and 3.8 are a contour plot and three-dimensional view of the bridge 

deck deflections, respectively. (the vertical axis of the deflection of figure 3.8 
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has the units of inches). The bridge deflections are cause by dead loads alone, 

and since the bridge geometry and section properties are symmetric, the 

deflections were expected to also exhibit symmetry. They did. 
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Moving Truck Load Analysis : In part two of the bridge analysis, a 1000 

kips concentrated live load moves along one of the outer bridge girders. We 

compute and plot the influence line for the moving load. The latter sections of 

the input file are extended so that response envelopes are computed for a point 

load moving along the bridge. 

LOAD DIRECTION - 

10 LOAD INCREMENTS @ 10 FT 10 LOAD INCREMENTS @’ 10 FT 
c 

FRAMING PLAN 

LOAD DIRECTION - 

I I 

I 
I 
I I 

L 
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I- 2-i 

FRONT ELEVATION 

Figure 3.9: Plan and Front Elevation of Bridge with Moving Live Load 
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Figure 3.10: Cross Section of Bridge with Moving Live Load 
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Figure 3.9 shows plan and elevation views of the bridge and moving point load. 

A cross sectional view of the bridge and the moving point load are shown in 

figure 3.10. The relevant details of the abbreviated input file are as follows: 

ABBREVIATED INPUT FILE 

/* Compute stiffness matrix and LU decomposition */ 

stiff = StiffO; 
lu = Decompose (stiff); 

/* Adding moving truck load 

for( i=l ; iC=step ; i=i+l > ( 
NodeLoad( load-node, CFX,FY,FZ,M~,MY,MZI >; 

eload = ExternalLoadO; 
displ = Substitution( lu, eload 1; 

node-displ-l = GetDispl( [nodenoll, displ 1; 
node-displ-2 = GetDispl( Cnodeno21, displ 1; 

influ-1inelCil I31 = node-displ-lCllC31; 
influJine2 CilC11 = node-displ-2ClIC31; 

NodeLoad( load-node, C-Fx,-Fy,-Fz,-Mx;-My,-Mz] 1; 
load-node = load-node + nodes-per-section; 

3 e 

Figure 3.11 shows the influence line of vertical displacement in the middle of 

one span (i.e., at node no 97) for the first girder subjected to 1000 kips moving 

live load. Similarly, figure 3.12 shows the influence line of displacement in the 

middle of one span (i.e., node no 2 = 103) due to the 1000 kips moving live I- 

load. 
I 

The moving load analysis is one situation where a family of linear equations is i 

solved with multiple right-hand sides. With this observation in mind, notice L 
r‘ 

how we have called the function Decompose0 once to decompose stiff into a 

product of upper and lower triangular matrices, and then called 
2 
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Substitution0 to compute the forward and backward substitution for each 

analysis. This strategy of equation solving reduces the overall solution time by 

approximately 70 percent. 

10 I I 1 
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Figure 3.11: Influence Line of Displacement in the Middle of One Span for the 
First Girder Subjected to 1000 kips Moving Live Load 
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3.3.2 WSD Checking of Simplified Bridge 

This example illustrates the application of ALADDIN to .4ASHTO Working 

Stress Design (WSD) code checking. It is adapted from one of the examples for 

MERLIN DASH presented in the ENCE 7.51 class n&s, University of 

Maryland. 

A finite element analysis will be made of a one span, simply supported, 

composite steel W-beam bridge with cover- plated bottom flanges. The beam 

response will then be checked against a small family of WSD design rules. 

The analysis will be simplified by considering only a single interior girder. A 

plan and cross-sectional view of a typical bridge framing system are shown in 

figures 3.13 and 3.14. 
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Figure 3.13: Plan of Highway Bridge 

The bridge girders are made of rolled beam W33xl30 with a 14” x 3/4” steel 

cover plate. An elevation view of the bridge and the position of the steel cover 

plate is shown in figure 3.13. The material properties are F’ = 50 ksi and E, = 

29,000 ksi. The effective cross sectional properties of the composite section 
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(with and without the cover plate) are computed with n = Es/EC = 10. The 

section properties are shown in figure 3.16. 

The bridge is subjected to external dead and live loading. The design dead 

load is due to a concrete slab that is 7 inches thick, a steel girder, and 

superimposed load. The design live load consists of a 72 kips HS-20 truck, 

modeled as a single concentrated load moving along the girder nodes. The 

abbreviated input file below shows details of the WSD rule checking. 

ABBREVIATED INPUT FILE 

/* WSD code checking for deflections and stress requirements */ 
/* Cl] Deflection checking */ 

impact = I + 5O/(length+125); 
if( -impact*msx-displ-liveCllC21 > (1/800)*length > then < 

print "\n\tWarning: (LL+I) deflection exceeds l/800 span\n"; 
3 else C 

print "\n\tOK : (LL+I) deflection less than l/800 span\n”; 

3 

/* [2] Moment stress checking */ 

if( stress1 > 0.55*my-material[31[1] ) then< 
print "\n\tWsrning : moment stress without cover plate larger 

than 0.55*Fy\n"; 
3 else 4. 

if( stress2 > 0.55*my-materialC3lCll 1 theni: 
print "\n\tWarning : moment stress with cover plate larger 

than 0.55*Fy\n"; 
3 else C 

print "\n\tOK : moment stress less than 0.55*Fy\n"; 
3 

3 

/* [3] Shear stress checking */ 

if( shear > 0.33*my-materialC31 Cl3 > then( 
print "\n\tWsrning : shear stress larger than 0.33*Fy\n"; 

3 else ( 
print "\n\tOK : shear stress less than 0.33*Fy\n"; 

3 

Points to note in the input are: 
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1. In this example, we check the analysis result with AASHTO WSD 

specification. The impact factor for live load is based on the formula 

AASHTO Eq. (3-l) 
50 

1 
= L + 125 

in which 

I = impact fraction (maximum 30 percent); 

L = length in feet of the portion of the span; 

2. The deflection checking is based on AASHTO Art. 10.6.2, the deflection 

due to service live load plus impact shall not exceed l/800 of the span. 

3. The allowable stress is 0.55 x Fy for tension and compression member, 

0.33 x Fy for shear in web. 

4. The follow array elements are used in the generation of program output: i 

max_displlN CZ] = the maximum displacement of the beam. 
max-mom C21 C31 = the maximum moment. 
max-sh Cl1 121 = the 
cover_mom[2][3] = the 

r 
i. 

maximum shear force. 
moment at nhere the bridge section changed. 

i 
A summary of the bridge response is contained in figures 3.17 to 3.19. The 

following points are noted: 
, 

1. Since this is a simple-supported bridge, the maximum displacement and 

maximum bending moment will occur at the middle of the span. The 

maximum shear force will occur at the end support. 

2. The final results of moment, shear and displacement are calculated 

according to AASHTO WSD request: Total = DL + impact * LL. The 

output message about the deflection checking is 
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OK : (LL+I) deflection less than l/800 span 

3. The stress caused by bending is given by: 

M-Y Moment stress = I. 

Because there are two different section properties, not only the maximum 

moment stress in the middle of the span (stress2) needs to be calculated 

but also the moment stress where the section changes (stressl). Shear 

stresses are given by: 

Shear stress = A. 

The author assumed that the shear force was carried by the girder web 

alone, and therefore, only the maximum shear at the end support were 

checked. The output messages about the moment and shear stress 

checking are 

OK : moment stress less than 0.55*Fy 
OK : shear stress less than 0.33*Fy 

4. The influence line diagram for the bending moment at the middle of the 

span is shown in figure 3.18. It is obtained by iteratively positioning one 

truck load at a finite element node, then solving for the reaction forces. A 

similar procedure is employed to compute the influence line of shear force 

at the end support - see figure 3.19. 

5. Figure 3.17 shows the distribution of bending moments caused by truck 

loading (it is noted in passing that the bending moment diagram 

corresponds to an envelope of the moment influence lines of the truck 

load). 
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Figure 3.19: Influence Line of Shear at End Support 
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CHAPTER 4 

Fiber Beam-Column Element 

4.1 Introduction 

A fundamental tenet of performance-based seismic design is the expectation of 

nonlinear structural behavior caused by severe earthquake ground motions. 

Events of this type necessitate nonlinear time-history analysis of structures. 

However, because of the complex interactions between the various components 

of real structures, the nonlinear response of a structure is not always easy to 

capture. State-of-the-art solution procedures use structural models that are an 

assembly of interconnected elements capable of modeling nonlinear material 

and geometric behavior. 

-u li 

i 

L 
Figure 4.1: Lai’s Model for Inelastic Element a i 

i. 

I  

i: 

The earliest beam-column elements incorporating nonlinear behavior assumed 

that plastic deformations would only occur at the beam end-points. For 

example, the fiber hinge model proposed by Lai et al. assumes that nonlinear 

i 
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behavior will only occur at the element end-points.(26) The nonlinear 

components of the element consist of a bunch of springs having nonlinear 

force-displacement relations, as shown in figure 4.1. More accurate descriptions 

of the inelastic member behavior are possible with distributed nonlinearity 

models. Material nonlinearities can take place at any element section. The 

element behavior is derived by weighted integration of the section response. In 

practice, however, since the element integrals are evaluated numerically, only 

the behavior of selected sections at the integration points is monitored. 

Filippou and Issa have proposed an analysis method where elements are broken 

into sub elements. Each sub element is capable of describing a single effect.(16) 

The interaction between these effects is achieved via a judicious combination of 

sub elements. The advantages of this modeling approach include the use of 

relatively simple nonlinear hysteretic laws at the sub element level, while not 

compromising the ability of the element system to mimic complex hysteretic 

behavior through the interaction of the different sub elements. The first 

elements with distributed nonlinearity were formulated with the classical 

stiffness method. However, as these investigators soon discovered, the main 

shortcoming of stiffness-based elements is their inability to describe the 

behavior of the member near its ultimate resistance. Many implementations 

are plagued with problems of numerical instability. 

Mahasuverachai was the first investigator to propose the use of flexibility 

dependent shape functions that are continuously updated during the analysis 

as inelastic deformations spread into the member.(27) The flexibility approach is 

based on force interpolation functions within the element, and it has the benefit 

of permitting a more accurate description of the force distribution within the 
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element. In fact, for those cases where no element loads are applied, the force 

interpolation functions satisfy element equilibrium in a strict sense. This 

condition holds even when material nonlinearities occur at the section level. 

For structural members constructed from more than one material, (e.g., 

reinforced concrete members and lead-rubber base isolator elements), the most 

promising models for the nonlinear analysis of such members are 

flexibility-based fiber elements, as proposed by Filippou et a1..t4@ Filippou and 

co-workers also present a nonlinear iterative element state determination 

procedure that always maintains equilibrium and compatibility within the 

element, and eventually converges to a state satisfying the section constitutive 

relations within a specified tolerance. 

The purposes of this chapter are two fold. First, the formulation of a 

flexibility-based fiber element that incorporates both flexural and shear effects 

is presented. We then demonstrate the effectiveness of the element state 

determination procedures by computing the load-displacement relationship for 

a material softening bar subject to a range of axial loads. 

4.2 Fiber Beam-Column Element 

4.2.1 Fiber Model 

Figure 4.2 shows the elevation and cross-section views of a typical fiber 

beam-column element. In its longitudinal direction, the element is subdivided 

into a discrete number of fiber sections located at control points of the 

numerical integration scheme used in the element formulation. The 

cross-sectional view indicates how individual fibers of area &fib are positioned 

in the y - z reference system. 
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Figure 4.2: Fiber Element Model 

The nonlinear constitutive relations of the overall element cross-section are 

derived by integration of the nonlinear stress-strain relations of the individual 

fibers. Each fiber follows a uniaxial stress-strain relation for a particular 

material. 

The fiber beam-column element formulation is based on the assumption of 

linear geometry. Plane sections remain plane and normal to the longitudinal 

axis during the element deformation history. From the assumption that plane 

sections remain plane and normal to the longitudinal axis, we conclude that all 

fiber strains and stresses act parallel to this axis. Since the reference axis is 

fixed, the geometric centroid of the sections form a straight line that coincides 

with the reference axis. If an element does not comply with this hypothesis, 

then it should be divided into sub-elements that connect the centroids of the 

selected sections. 
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4.2.2 Material Nonlinearity 

In a fiber element, the constitutive relation for each integration section 

corresponds to the integration of individual fiber relations at that integration 

point. Complex nonlinear section behavior can occur even if the individual 

fibers are modeled with nonlinear stress-strain relations in the uniaxial 

direction alone. The fiber element that we have incorporated into ALADDIN 

has a bi-linear stress-strain relationship in uniaxial stress, and follows the 

kinematic hardening rule. See figure 4.3. / 

Figure 4.3: Stress-Strain Relationship for Fiber Element 

The precise stress-strain relations are defined by three criteria: 

1. Yield criterion: Yielding begins when Ial reaches ay, either in tension 

or compression. 

2. Flow rule: if the material has yielded, da = Et de; if the material has 

yet to yield or is unloading, then da = E de. 

3. Kinematic hardening rule: While reloading, the response will be 

b 
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elastic until it reaches the previous unloading point, which is point B in 

figure 4.3. While loading is reversed, the yielding reappears at 0~3 - 2ay, 

which means that there is a total 20~ elastic stress range. 

4.3 Formulation of Fiber Beam-Column Element 

Formulation of the fiber beam-column element requires two steps. First, the 

generalized forces and deformations must be defined. The distribution of forces 

along the element and the section material and cross-sectional properties are 

then used to complete the tangent stiffness matrix. 

4.3.1 Definition of Generalized Forces and Deformations 

The generalized element forces and deformations, and the corresponding 

section forces and deformations are shown in figure 4.4. Rigid body modes are 

not included in figure 4.4. Since the present formulation is based on linear 

geometry, rigid body modes can be incorporated with a simple geometric 

transformation. To simplify the definition and manipulation of the relevant 

equations, the forces and deformations in the element and section states, 

stresses and strains of fibers at each section, are grouped into the following 

vectors: 

Element force vector Q = ( &I Q2 Q3 Q4 Q5 IT 

Element deformation vector q = -c Ql Q2 43 44 45 1’ 
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Figure 4.4: Generalized Forces and Deformations at Element and Section Level 

Section force vector 33(z) = 

Section deformation vector d(z) = 

N,(x) 
4l (4 
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‘%fib(x, !&fib, &fib) 

Fiber strain vector e(z) = < 

Gx (x7 Yn, &) 

I aifib(x, @fib, &fib) 

Fiber stress vector a(z) = ( 

In the fiber state, vector x describes the position of the section along the 

longitudinal reference axis, and vectors j./ifib and &fib refer to the fiber position 

in the cross section, as shown in figure 4.2. The variable n refers to number of 

fibers in the cross section. 

4.32 Fiber Beam-Column Element Formulation 

The force distribution D(x) along the element is related to the element 

generalized force vector Q by the force interpolation matrix b(z): 

D(x) = b(x) . Q. 

Now lets assume that the axial force field N,(x) shown in figure 4.4 is 
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constant. It follows that the bending moment fields MY(x) and M,(z) will be 

linear, and the shear force fields V,(z) and V,(x) will be constant. The force 

interpolation matrix is selected as: 
/ \ 

1 0 0 0 0 

0 f-1 x 
Tz 

0 0 

b(x) = < o o o ;-I ; >. 

oooll 

0 -- ; 
L E 

1 -- 
L 

0 0 

Following the hypothesis that plane sections remain plane and normal to the 

longitudinal axis, the fiber strain vector and the section deformation vector are 

related by the section compatibility matrix l(x) by: 

E(X) = l(x). d(x), 

where l(x) is a linear geometric matrix as follows 

l(x) = 

1 Xl -Y1 0 0 

. . . . . . . . . . . . . . . 

1 Xifib -!&fib 0 0 

. . . . . . . . . . . . 

1 && -yn 0 0 

00 0 1. 0 

00 001 
, 

The tangent modulus &fib of the fibers is determined from the appropriate 

fiber stress-strain relations, computed when the fiber strains are updated for a 

new given deformation increment Ad(x). The tangent modulus and the areas 

of all fibers are written in diagonal matrices: 

i- : 
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E tan = 

-&fib 
*. 

Et-t 
G 

G 

A= 

f&fib 

42 
AZ 

A; 

where 

G is element shear modulus, AZ and A; are element shear area in z and y 

directions. The new section tangent stiffness matrix can be calculated from 

k(z) = IT(x) - (Etan - A) . l(x). 

The section tangent stiffness matrix k(z) is then inverted to obtain the new 

section tangent flexibility matrix f(z). The section resisting forces DR(z) are 

computed by summing all of the new fiber stresses. In mathematical terms, we 

compute: 

D&T) = lT(z) - A - a(z). 

It is important to point out that all section matrices and vectors are computed 

with respect to a fixed section reference system which coincides with element y 

and z axes. 

4.3.3 Newton-Raphson Method 

The analysis of structures having nonlinear material behavior typically requires 

solutions to families of nonlinear equations. One of the most commonly used 

procedures is Newton-Raphson iteration.(13) 
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Figure 4.5: Newton-Raphson Solution Procedure i" 
P 

Figure 4.5 illustrates the Newton-Raphson solution procedure for a 

displacement UB caused by an external force PB. The iterative procedure 

begins at point A, (i.e., at coordinate (UA, PA)) and involves repeated solutions 

of [Ks]“-l{Ap)” = {AP E } ‘, where the tangent-stiffness matrix [K,] is updated 

after each iteration. The resisting force (PR}~ is calculated and is used to 

compute the unbalanced load {Pv}” = {P) - (P#. If the unbalanced load 

{Pv}” is not within the specified tolerance, i is incremented to i + 1 and the 

next iteration begins with {APE}~+~ = {Pu}~. The solution process seeks to 

reduce the unbalanced load (Pu}, and consequently {Ap}, to zero. Iterations 

continue until the unbalance loads reduce to less than a pre-specified level. 
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4.3.4 Fiber Beam-Column Element State Determination 

During the structure state determination, each iteration of Newton-Raphson 

iteration i is organized as follows:(46) 

1. Solve the global system of equations and update the structure 

displacements. 

K$-1 . Api = APL 

*i = pi-l + Api 

(4-l) 

(4-2) 

2. Compute the element deformation increments and update the element 

deformations. 

Aqi = Lele . Api 

qi = qi-l + nqi 

(4.3) 

(4.4) 

The matrix Ld, relates structural displacements with’element 

deformations and is the combination of two transformations: let q be the 

element displacements with rigid-body modes in the local reference 

system, in the first transformation the element displacements in the 

global reference system p are transformed to the displacements & in the 

element local reference system. In the second transformation the element 

displacements q are transformed to element deformations q by 

elimination of the rigid-body modes. 

3. Start the fiber beam-columrrelement state determination. The state 

determination of each element is performed in a loop j that surrounds all 

elements in the structure. The index of the first iteration is j = 1. 
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When j = 1, {}j-l = {lo = oiml un ess 1 indicated otherwise, where i - 1 

corresponds to the state of the element at the end of the last i - 1 

iteration. 

4. Compute the element force increments. 

AQj = KS-1 . Aqj 
(4.5) 

B 

f 
Whenj= 1, Aql = Aqi. 

5. Update the element forces. 

&j = &j-l + AQj 
w-3 

i 

r 

6. Compute the section force increments. bi 

AD+) = b(z) . AQj 
f 

D+) = D+‘(z) + AD+) (4.8) 

Steps 6 through 13 are performed at all of the control sections (i.e., . 

integration points) in a fiber element. 

(4.9) 

7. Compute the section deformation increments. 

Adj(z) = fj-‘(z) . ADj(z) + rj-l(z) 

d+) = d+‘(z) + Ad+) (4.10) 

where r(z) is the residual section deformations from the previous 

iteration. Note that when j = 1, r”(z) = 0. 

8. Compute the fiber deformation increments. 

A&) = l(z) - Ad+) 

+) = p-1 (cc) + Ad(z) 

(4.11) 

(4.12) 
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9. Compute fiber stresses and tangent modules. 

According to the material properties and the stress-strain relationship of 

the fibers, the stresses o&(x, gifib, zifib) and tangent modules IZ&(x) of 

all fibers are computed from the stresses o$$ (z, ~ifib, ,z+) and strains 

e&(x, pifib, .z+b) at the previous step j - 1, and the current fiber 

deformation increments &&, . 

10. Compute the section tangent stiffness and flexibility matrices. 

k(z) = lT(z) . (Et, . A). l(z) 

The result of the section tangent stiffness is: 

kj(x) = 

0 0 0 GA; 0 

0 0 0 0 GA; 
(4.1 

where n is the total numbers of fibers in the cross-section, Aifib is the 

cross-section area, and Eifib is the tangent Young’s modulus of the if@ 

fiber element at section x. The latter is computed at step 9. 

The stiffness matrix is then inverted to obtain the new section flexibility 

matrix. 

fj(x) = [kqx)]-l (4.14) 

88 



11. Compute the section resisting forces. 

Da(x) = lx(x) - A - a(x) 

After carrying out the multiplication, the result of the section resisting 

forces corresponds to the summation of fiber element axial force, bending 

moment, and shear force contributions is: 

D$(x) = 

where ~fib is the stress of the ifi@ fiber element at section x that is 

computed from step 9. 

12. Compute the section unbalanced forces. 
, 

b$(x) = e(x) - D;(x) (4.16) 

13. Compute the residual section deformations. 

d(x) = fj(x) - D$(x) (4.17) I 

t ; 
14. Compute the element flexibility and stifEness matrices. 

L 

Fj = J bT(x) - fj(x) . b(x) . dx 
0 

m 
= 

c W nsec * bT (xnsec) . fj (xnsec) * b(xnsec) (4.18) 
nsec=l 
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Kj = [I+]-’ (4.19) 

The numerical integration is carried out with the Gauss-Lobatto(44) 

integration scheme. m is the number of monitored sections in the 

beam-column element, z,,,, is the x coordinate of the section in the local 

reference system, and wnsec is the corresponding weight factor. 

15. Check for convergence of resisting forces from the element deformations. 

(a) If the element has converged, set element forces Qi = Qj and 

stiffness Ki = Kj. Go to step 16; 

(b) If the element forces have not converged, compute the residual 

element deformations 

sj = / b*(z) - ti(zc) + dz 
0 

m 
= c Wnsec s b*(xnsec) . G(znsec) (4.20) 

nsec=l 

then increment j to j + 1 and set Aqj+l = -sj. Repeat steps 4 

through 15 with Aqj+l until element convergence is reached. 

16. Compute the new structure resisting forces and structure stiffness matrix. 

Iteration i is complete when all of element forces have converged. 

pk = 5 LI$e ’ (Qi)ele 
ele=l 

(4.21) 

Kz = l? L$e * W)ele * be (4.22) 
ele=l 

If convergence at the structural level is achieved, apply a new load 

increment, otherwise continue the Newton-Raphson iteration process. 
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4.4 Numerical Examples 

4.4.1 Material Softening Composite Bar 

Before implementing the fiber element in ALADDIN, we want to test the 

algorithm defined by equations 4.1 to 4.22 with the force-displacement 

computation for a material softening composite bar subject to axial loads. This 

example is inspired from Appendix C of Filippou et al..(46) It is important to 

bear in mind that while this problem looks trivial, standard stiffness-based 

elements experience difficulty with this problem because assumed distributions 

of force-displacement deviate significantly from actual displacements, especially 

in the post-yielding region. Hence, standard stiffness-based approaches to this 

problem have difficulty computing a displacement that satisfies equilibrium of 

the section forces. 

The composite bar is constructed from two materials - one is always elastic, 

the second has softening material behavior after yielding. The section 

dimensions and material properties are shown in figure 4.6. The axial load 

versus time step is shown in figure 4.7. The following abbreviated script of 

code shows the essential details of the solution algorithm for the two-element 

softening bar problem: 

ABBREVL4TED INPUT FILE 

L = C-l , 11; /* transformation matrix Lele */ 
bx = I; /* force interpolation matrices b(x) */ 

/* assemble initial structure tangent stiffness matrix BigK */ 
BigK = [ Ksl+KsZ, -Ks2; -Ks2, Ks2 ]; 

/* increase displacement, structure determination */ 

for ( step=l; step<=total-step ; step=step+l ) C 

P = p + d-p; 

; 
1 
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bl = 10 cm 
hl = 30 cm 
L1=2m 

b2 = 10 cm 
h2 =.20 cm 
L2 = 1.5 m 

EI = 30000-%1~ E2 = 20000%2 
Et1 = -O.l.El 
oyl = lOOON/,z 

Figure 4.6: Composite Bar under Axial Load 

Step Number 

Figure 4.7: Axial Load 
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/* state determination for each element */ 

for( ele=l;ele<=2;ele=ele+l ) < 

. . . . . . details about retrieving data from (j-1) . . . . . . / 
q = q + d-q; 

/ , 
/* element converge, j */ 

while( abs(DUx) > 0.00001 N )< 

d-Q = K*d-q; /* element force increment */ 
Q = Q + d-61; /* update element force */ 
d-Dx = bx*d-Q; /* section force increment */ 
d-k = rx f fx*d-Dx; /* section deformation increment */ 
Dx = Dx + d-Dx; /* update section force */ 
dX= dx + d-dx; /* update section deformation */ 

/* get new section tangent flexibility f(x) */ 
/* and section resisting force DR(x) */ 
. . . . . . details removed . . . . . . 

DUx = Dx - DRx; /* section unbalanced force */ 
rx = fx*DUx; /* section residual deformation */ 
F = bx*fx*bx; /* new element flexibility */ 
K = l/F; /* new element stiffness */ 
s = bx*rx; /* element residual deformation */ 
d-q = -s; 

3 /* end of while loop, j */ 

. . . . . . details of updating data at loop j . . . . . . 

PReCelel Cl1 = Q; /* element resisting force */ 
3 

E 
/* assemble structure resistant force */ 

PRCll C11=PReCllC11-PRe[21Cll; 
PRC21Ell=PRe C21 Ill; 

F 
i . . . . . . details of storing response removed *..... 

. ..*.. details of adjusting after yielding removed 
b 

. ...*. 
L 

3 /* end of for loop step */ 

Some points to note in the input file are: 

1. The body of the while () loop is a step-by-step implementation of 



equations 4.1 through 4.22. In fact, a user can write down the whole 

algorithm formulation in the input file, and test it even before a finite 

element is coded for ALADDIN. 

2. This input file contains matrices defined with units, and a well defined 

sequence of matrix operations. Physical units are carried through every 

step of the calculation procedure. While the addition of units results in 

some computational overhead, and slow down the speed, the verification 

of consistent units provides a helpful check in the identification of errors. 

The final results are plotted in figure 4.8, 4.9 and 4.10. We can see that after 

the softening material starts to yield, the resistant force drops with further 

increases in the bar elongation. 
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Figure 4.8: Force-Deformation History of Material Softening Element 
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Figure 4.9: ForceDeformation History of Elastic Element 
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Figure 4.10: Force-Deformation History of Composite Bar 



Finite Element Implementation : Now that we know the algorithm works 

well on a computationally difficult problem, the next step is to implement the 

fiber element and the iterative solution procedure in ALADDIN’s finite element 

library. The input statements for the whole solution procedure will be reduced 

to: 

for(step=l ; step <= total-step ; step=step+l)( 

displ = displ + dp; /* get structure displacement */ 
ElmtStateDet(dp1; /* element state determination */ 
PR = InternalLoad(disp1); /* get structure resistant force */ 
UpdateResponse(); /* update element information */ 

3 

The function ElmtStateDet 0 takes care of the step 2 to 15 in the algorithm 

summary, and it has one matrix argument containing the structure incremental 

displacements in global reference system. The function InternalLoad 0 

calculate the structure resistant force in step 16. The function 

UpdateResponse 0 saves information on the stress, strain, and material 

properties for all elements at the current step. 

i: 
P  

/  
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4.42 Cantilever Beam with Material Nonlinearity 

Our second example in this chapter illustrates the behavior of a 

two-dimensional cantilever beam constructed from a material having bi-linear 

behavior. The beam is subject to a monotonically increasing point load at its 

free end. The section dimension and material properties are shown in figure 

4.11. 

We use the fiber element from the ALADDIN’s element library to solve this 

problem (see APPENDIX A for details about the fiber element). The 

cantilever is modeled with 10 FIBER2D elements, each element contains 40 

fibers and is cut into 5 integration sections. The mesh is shown in figure 4.12. 

The following abbreviated input file shows the for-loop of the loading process. 

ABBREVIATED INPUT FILE 

/* Setup the response matrices */ 

total-step = 60; 
tip_response=ColumnUnits(Zero(Ctotal_step+l,31),Clbf,in,radl); 
displacement=Columnkits(Zero(Ctotd-node,61),bl); 
rotation =Columnunits(Zero (Ctotal_node,61),Cradl); 
curvature =Col~units(Zero(Ctotdl,e~t,6l),Crad/~l); 

flag = 0; index = I; 

for( step=1 ; step <= total-step ; step=step+l > < 

/* Add incremental nodal load at each step */ 

dPk = [ 0 lbf, 1 lbf, 0 lbf*in I; 
NodeLoad( total-node, dPk 1; 
P-new = ExternalLoadO; 
dP = P-new - P-old; 
P-old = P-new; 

/* Newton-Raphson Iteration */ 

while( L2Norm(dP) > 0.001 > < 

dp = Solve( KS, dP 1; 
displ = displ + dp; 
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b = 1 in E = 20000 psi 
h=4in EL = 0.1-E 
L = 50 in BY = 500 psi 

Figure 4.11: Cantilever Beam Subjected to Incremental Tip Load 
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Figure 4.12: Element Mesh of Cantilever Beam 
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ElmtStateDet( dp 1; 

KS = StiffO; /*Compute new stiffness */ 
PR = InternalLoad( displ 1; /*Compute internal load */ 
dP = P-new - PR; /*Compute unbalanced force*/ 

) /* end of while loop, dP converges */ 

/* Update element history data and save tip response */ 

UpdateResponseo; 

/* store the tip response */ 

tip-response[step+Il Cl1 = P-new Cmax-dofl Cll; 
tip-response[step+llC21 = displ Cmax-doflC11; 
tip-response[step+ll C31 = displCmax_dof+ll IIll; 

/* store all element results every IO steps */ 

flag = flag+l; 
if( flag == IO > C 

for( node=2 ; node<=total-node ; node=node+I > < 
node-displacement = GetDispl(Cnodel,displ); 
displacementCnode1 Cindexl = node-displacement CIICZI; 
rotation[node][indexl = node-displacement[I] 131; 

3 
for(elmt-no=1 ; elmt-no<=total-elmt ; elmt-no=elmt-no+l)X 

curvature[elmt-no][index]=(rotationCelmt-no+IlCindexl 
- rotation[elmt_nol[indexl>/(5 in); 

flag = 0; index = index+I; 
3 

) /* end of load step */ 

Points to note in input are: 

1. A matrix tipresponse stores the applied external load, tip 

displacement, and tip rotation for each step, including the initial 

non-loaded status. A matrix displacement stores the nodal displacement 

every 10 steps. A matrix rotation stores the nodal rotation every 10 

steps. 
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2. We also allocate memory for a matrix curvature which holds the 

element curvatures every 10 steps. We can easily calculate the curvature 

for the element i by 
6 - ei 

Ki = 
i+l 

Li . 

because curvature along an element is constant. Here Li is the length of 

element i, 8i and #i+l are the end rotations, and Ki is the curvature for 

the fiber element. 

3. The nonlinear analysis method we are using here is Newton-Raphson 

solution process as presented in section 4.3.3. We call the built-in 

function ElmtStateDet 0 to perform all element state determinations, as 

formulated in the previous section. Finally, the built-in function 

UpdateResponse 0 updates the element stress, strain, and material 

information after each load step finished. 

The final results are plotted in figures 4.13 through 4.16. Our observations and 

conclusions of this analysis are: 

1. According to the equations: 

0 MY =- and M=P.L 
I 

first yielding of the fibers occurs in the outer layers of the beam at the 

fixed end when the tip load reaches 26.7Zbf. The coordinates of first yield 

arez=Oinandy= f2in. However, the element is meshed so that the y 

coordinate of the outer fiber is l.%n, therefore the extreme fiber first 

yields at the tip log of 29.3Zbf. 
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2. Figures 4.13 and 4.14 show the cantilever tip deflection and rotation 

versus applied tip load. Both curves are smooth even though the material 

behavior is bi-linear. This behavior can be attributed to the gradual 

spread of fiber yielding and from the exterior fibers towards the beam 

centroid. 

3. Figure 4.15 shows that the beam deflection grows rapidly after yielding. 

4. In figure 4.16 we easily see which elements are elastic, which elements are 

partially plastic, and which elements are totally plastic based on the 

curvature change. 

5. This fiber element includes effects of shear deformation. When 

P = 201bf, for example, the calculated tip deflection is 7.85489in. The 

tip load considerations indicate that the theoretical exact solution for the 

tip loaded cantilever beam is 

PL3 fsPL 
vb = - = 7.8125in, 

3EI 
v, = GA - = O.O375in, vt = ?.+, + Vu, = 7.85in 

where fs is the shear factor. If the relative shear deformation effects are 

not considered (like in the FFCAME2D element), the relative numerical 

error will be 

err = 2 = 0.478%. 
vt 

The relative numerical error for this example is 

err = ” - vt’ = 0.06237 0 
vt 

which is much less than the traditional plane frame element. In this 

example the numerical error of FFLAMEZD is small because the beam is 
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slender (i.e., h/L < l/10). Shear deformation would make a much larger 

contribution to the overall displacement for deep beams with large h/L 

ratios. 
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Figure 4.13: Tip Deflection Response 
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Figure 4.15: Nodal Deflection Along the Cantilever Beam 
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Figure 4.16: Element Curvature Along the Cantilever Beam 
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CHAPTER 5 

Procedures for Dynamic Analysis of Structures 

5.1 Solution Methods for Dynamic Analysis of Structures 

The purpose of this chapter is to show how ALADDIN and the fiber element 

procedures developed in chapter 4 can be applied to the dynamic time-history 

analysis of multi-degree of freedom structural systems. We will assume that the 

behavior of these systems is governed by solutions to the family of matrix 

equations: 

M@) + d(t) + K(X(t))X(t) = P(t). (5.1) 

Here M, C, and K are (n x n) mass, damping, and stiffness matrices, 

respectively. P(t), X(t), i(t), and X(t) are (n x 1) external load, displacement, 

velocity, and acceleration vectors at time t. The notation K(X(t)) indicates 

that the stiffness matrix will be a function of the system displacements. 

Because analytical solutions to equation 5.1 are intractable for all but the 

simplest systems and loading conditions, in practice, numerical solution 

procedures must be relied upon for time-history computations. Three of these 

methods are presented in the following subsections. 

5.1.1 Modal Analysis 

Let <P be a (n x p) nonsingular matrix (p 5 n), and Y(t) be a (p x 1) matrix of 

time-varying generalized displacements. The objective of the method of modal 
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analysis is to find a transformation 

x(t) = @Y(t) (5.2) 

that will simplify the direct integration of equations (5.1). The modal 

equations are obtained by substituting equations (5.2) into (5.1), and then 

pre-multiplying (5.1) by aT. The result is: 

aTM@rii(t) + @‘C@+(t) + aTK@Y(t) = 4DTp(t). (5.3) 

The notation in (5.3) may be simplified by defining the generalized mass 

matrix as M* = aTMa, the generalized damping matrix as C* = GTC@, the 

generalized stiffness matrix as K* = aTKQ, and the generalized load matrix 

as P*(t) = aTP(t). Substituting these definitions into equation (5.3) gives 

M*i;(t) + C*r;(t) + K*Y(t) = P*(t). (5.4 

The transformation matrix @ is deemed effective when the bandwidth of 

matrices in (5.4) is much smaller than in equations (5.1). From a theoretical 

viewpoint, there may be many transformation matrices 9 which will achieve 

this objective - a judicious choice of transformation matrix will work much 

better than many other transformation matrices, however. 

Example : To see how the method of modal analysis works in practice, 

consider the free vibration response of an undamped system 

MT?(t) + KX(t) = 0, (5.5) 

where M and K are (n x n) mass and stiffness matrices. We postulate that the 

timehistory response of (5.5) may be approximated by a linear sum of p 
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harmonic solutions 

where gi (t) is the ith component of Y(t), and $i is the ith column of @. The 

amplitude and phase angle for the ith mode are given by Ai and ,Bi, respectively 

- both quantities may be determined from the initial conditions of the 

motion. We solve the symmetric eigenvalue problem 

K@ = M<PA 

for @ and A is a 0, x p) diagonal matrix of eigenvalues 

(5.7) 

(5.8) 

It is well known that the eigenvectors of problem (5.6) will be orthogonal to 

both the mass and stitiess matrices. This means that the generalized mass 

and stiffness matrices will have zero terms except for diagonal terms. The 

generalized mass matrix takes the form 

M* = 

I ml* 0 . . . 0 

0 m2* . . . 0 
. . . *. . . . 

1 0 O...m,* 1 

and the generalized stiffness looks like 

K* = 

w12ml* 0 . . . 0 

0 ws2m2* . . . 0 
. . . . . . . . . * . 

0 0 . . . wn2mg* 
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If the damping matrix, C, is a linear combination of the mass and stiffness 

matrices, then the generalized damping matrix C* will also be diagonal. A 

format that is very convenient for computation is: 

c* = 

%w-h* 0 . . . 0 

0 2&wgrn2* . . . 0 
. . . -. . . . 

0 0 . . . %aw-n,* 

, (5.11) 

where & is the ratio of critical damping for the ith mode of vibration. 

For the undamped vibration of a linear multi-degree of freedom system the 

eigenvalue/vector transformation is ideal because it reduces the bandwidth of 

M*, C*, and K* to 1. In other words, the eigenvalue/vectors transform 

equation (5.1) from n coupled equations into p (p < n) uncoupled single 

degree-of-freedom systems. The required computation is simplified because the 

total time-history response may now be evaluated in two (relatively simple) 

steps: 

1. Computation of the time-history responses for each of the p single 

degree-of-freedom systems, followed by 

2. Combination of the SDOF’s responses into the time-history response of 

the complete structure. 

A number of computational methods can be used to compute the time 

variation of displacements in each of the single degree of freedom systems. 

From a theoretical viewpoint, it can be shown that the total solution (or 

general solution) for a damped system is given by: 

dt) = fW sin(widt) + Ci(t) COS(W& 
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where ‘did = ~~41 - tf is the damped circular frequency of vibration for the ith 

mode. The time variation in coefficients &(t) and C(t) is given by: 

+ e-w(o) + 1 
wd 

-&-& Jo” P(T)eciwiT cos(w~dr)&] (5.13) 

ci(t) = eveiwit - & /d” P(T)diwiT sin(widr)dT 
i 7. I 

where yi(O) and &(O) are the initial displacement and velocity for the ith mode. 

If the details of P(T) are simple enough, then analytic solutions to (5.12) may 

be possible. For most practical problems (e.g., earthquake ground motions), 

however, numerical solutions to &(t) and Ci(t) must be relied upon. 

Numerical Example : We demonstrate the method of modal analysis by 

computing the time-history response of a four story building structure subject 

to a time-varying external load applied at the roof level. Details of the shear 

building and external loading are shown in figures 5.1 and 5.2. 

We obtain a simplified model of the building by assuming that all of the 

building mass is lumped at the floor levels, that the floor beams are rigid, and 

that the columns are axially rigid. Together these assumptions generate a 

model that is commonly known as a shear-type building, where displacements 

at each floor level may be described by one degree-of-freedom alone. Only four 

degrees of freedom are needed to describe total displacements of the structure. 

Details of the mass and stiffness matrices are shown on the right-hand side of 

figure 5.1. From a physical point of view, element (i, j) of the stiffness matrix 

corresponds to the nodal force that must be applied to degree of freedom j to 

produce a unit displacement at degree of freedom i, and zero displacements at 

all other degrees of freedom. Structural damping in the shear building is 

ignored. 
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k-1 = 400 kN/m. = 400 kN/m. 

x-2 
STIFFNESS = 

-800 2400 - 1600 

-1600 4000 -24&J 

-2400 5600 
k-2 = 800 kN/m. k-2 = 800 kN/m. L -I 

. 
x-3 

k-3 = lux) kN/m. k-3 = 1200 kN/m. 

- x-4 

MASS = 

k-4 = 1600 kN/m. k-4 = 1600 kN/m. 
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Figure 5.1: Schematic of Shear Building 

4500 

Figure 5.2: Externally Applied Force (kN) Versus Time (set) 
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-1 I 

T = 0.58 SEC 

MODE 1 

-1 1 

T = 0.26 SEC 

MODE 2 

-1 1 

T = 0.19 SEC 

MODE 3 

-1 1 

T = 0.14 SEC 

MODE 4 

Figure 5.3: Mode Shapes and Natural Periods for Shear Building 

Figure 5.3 summarizes the mode shapes and natural periods of vibration for 

each of the modes in the shear building. The shear building has a fundamental 

period of 0.5789 seconds. 

Dynamic behavior of the shear building is generated by a horizontal 

time-varying force (see figure 5.2 for the details) applied at the roof level 

degree of freedom. We have deliberately selected the time-scale of the applied 

force so that it has a period close to the first natural period of the structure 

(i.e., 0.5789 seconds versus 0.6 seconds period for the applied load). 

In the input file that follows, (2 x 2) generalized mass and stiffness matrices are 

generated by first computing the (4 x 2) transformation matrix ‘a 

corresponding to the first two eigenvectors in the shear building. The elements 

of the generalized mass and stiffness matrices are zero, except for diagonal 

terms. Each of the decoupled equations is then solved as single 

degree-of-freedom system. 
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ABBREVIATED INPUT FILE 

/* Compute first two eigenvalues, periods, and eigenvectors */ 

no-eigen = 2; 
eigen = Eigen(stiff, mass, [no-eigen]); 
eigenvalue = Eigenvalue(eigen); 
eigenvector = Eigenvector(eigen1; 

/* Compute generalized mass, stiffness and load matrices */ 

EigenTrans = Trans(eigenvector); 
Eigenmass = EigenTrans*mass; 

Mstar = Eigenmass*eigenvector; 
Kstar = EigenTrans*stiff*eigenvector; 
Pstar = EigenTrans*eload; 

/* Mode-Displacement Solution for Response of Undamped MDOF System */ 

for(i = 1; i C= nsteps; i = i + 1) 1 

/* Cl1 : Update external load */ 

time = time + dt; 
if(time <= 0.6 set) then < 

eloadC11 Cl] = myloadCi+llC23; 
3 else X 

eload[l][l] = 0.0 kN; 
3 

Pstar-new = EigenTrans*eload; 
D-Pstar = Pstar-new - Pstar; 

/* r.21 : Retrieve modal initial conditions */ 

Mdisp = Eigenmass*disp; 
Mvel = Eigenmass*vel; 
for( r=l ; r<=no-eigen ; r=r+l 1 C 

Mdisp[rl[l] = MdispCrlC11/MstarCrlCrl; 
MvelCrl Cl] = Mvel[r][i]/MstarCrlCrl; 

3 

/* c31 : Compute new generalized displacement for each SDOF system */ 
/* : Using piecewise-linear interpolation of excitation */ 

for( r-1 ; rC=no-eigen ; r=r+l > C 
W = sqrtceigenvalue Crl 111); 
wt = w*dt; 
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Mdisp-new[r][l] = Mdisp[rl[l]*cos(wt> + MvelCrlCl]*sin(wt>/w 
+ PstarCrlC11/KstarCrlCrl*( 1-cos(wt) > 
+ D-PstarCrl Cl1 /Kstar Crl Crl*( wt-sin(wt) >/wt; 

Mvel-new Crl Cl1 = w*( -Mdisp[r] Cll*sin(wt) + MvelCrl Cl1*cos(wt>/w 
+ Pstar [rl Cll/KstarCrlCrl*sin(wt~ 
+ D-Pstar/KstsrCrlCrl*( 1-cos(wt) )/wt 1; 

3 

/* c41 : Update new response */ 

Pstar = Pstar-new; 
disp = eigenvector*Mdisp-new; 
vel = eigenvector*Mvel-new; 

3 

Some points to note in the input file are: 

1. Overall behavior of the system is represented by (4 x 4) global mass and 

stiffness matrices. A (4 x 2) transformation matrix, @, is computed by 

solving equation (5.7) for the first two eigenvectors. It follows that the 

generalized mass and stiffness will be (2 x 2) diagonal matrices. 

2. The main loop of our modal analysis computes the time-history response 

via piecewise-linear interpolation of the excitation for the two decoupled 

equations. However, as we will see in the next section it is 

computationally simpler to use the method of Newmark integration to 

solve both sets of decoupled equations together. 

The building system response is summarized in figures 5.4 through 5.6. Points 

to note are: 

1. Figures 5.4 and 5.5 show the time-history response for the first and 

second modes, respectively. Notice that the amplitude of vibration for 

the first mode is an order of magnitude larger than for the second mode. 



You should also observe that after the external load finishes at time = 0.6 

seconds, the amplitude of vibration is constant within each mode, with 

the natural periods of vibration closely matching the eigenvalues/periods 

shown in figure 5.3. 

2. The combined first + second modal response is shown in figure 5.6. 
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5.1.2 Newmark Algorithm Method 

An important limitation of mode-superposition methods (e.g., see the 

calculation for the response of linear MDOF systems with proportional 

damping) is their inability to compute the nonlinear time-history response of 

structural systems. Step-by-step numerical integration procedures must be 

used instead. 

Newmark integration methods approximate the time-dependent response of 

linear and nonlinear second-order equations by insisting that equilibrium be 

satisfied only at a discrete number of points (or time steps). 

ii(t) At i 

=+(i.i i + ii i+l) 

9 

“qUi+l ai fj “flfii+l 

ti ti+l ti t i+l ti t&l . 

Figure 5.7: Numerical Integration Using Average Acceleration Method 

If (t) and (t + At) are successive time steps in the integration procedure, the 

two equations of equilibrium that must be satisfied are: 

MJf(t) + CA(t) + KX(t) ,= P(t), (5.15) 

MJt(t + At) + Ck(t + At) + KX(t + At) = P(t + At). (5.16) 
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Now let us assume that solutions to equation (5.15) are known and (5.16) 

needs to be solved. At each time step there are 3n unknowns corresponding to 

the displacement, velocity, and acceleration of each component of X. Since we 

only have n equations, the natural relationship existing between the 

acceleration and velocity, and velocity and displacement: 

A(t+At) = R(t) + Jr(:;t)t+An Z(T)ch, 

X(t+At) = x(t) + J;TAt) k(T)&, 

(5.17) 

(5.18) 

must be enforced to reduce the number of unknowns to n. X(T) is an unknown 

function for the acceleration across the time step. The Newmark family of 

integration methods assume that: 

1. Acceleration within the time step behaves in a prescribed manner, and 

2. The integral of acceleration across the time step may be expressed as a 

linear combination of accelerations at the endpoints. 

Discrete counterparts to the continuous update in velocity and displacement 

are: 

k(t + At) = k(t) + At[(l - y)*(t) + rz(t + At)] (5.19) 

X(t + At) = X(t) + At*(f) + $[(I - a/,@(t) + 2&t(t + At)] (5.20) 

with the parameters y and ,B determining the accuracy and stability of the 

method under consideration. The equations for discrete update in velocity and 

displacement are substituted into equation (5.16) and rearranged to give: 

tiit(t + At) = i)(t + At) (5.21) 
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where 

ti = M + yAtC + ,BAt2K (5.22) 

and 

@(t+ At) = P(t + At) - Ck(t) - KX(t) - At [K] ri-(t) - 

At[(l - y)C + +(l - 2/?)K]k(t). (5.23) 

It is well known that when y = l/2 and ,O = l/4, acceleration is constant 

within the time step t E [t, t + At], and equal to the average of the endpoint 

accelerations. In such cases, approximations to the velocity and displacement 

will be linear and parabolic, respectively, as shown in figure 5.7. Moreover, this 

discrete approximation is second order accurate and unconditionally stable.(14) 

When y = l/2 and ,O = l/6, acceleration is linear within the time step 

t E [t, t + At], and passes through the endpoint accelerations. While the second 

discrete approximation is more accurate than the former method, it is only 

conditionally stable and will diverge if it is applied to modal response 

components having periods of vibration less than 1.8 times the integration 

interval.Q2) 

Numerical Example : We demonstrate the Newmark algorithm method by 

repeating the linear time-history computation defined in the previous example. 

Details of the shear building and external loading are shown in figures 5.1 and 

5.2. 

An eight-part input file is needed to define the mass and stiffness matrices, 

external loading, and solution procedure via the method of Newmark 

Integration. The step-by-step details of our Newmark Algorithm are: 



1. Form the stiffness matrix K, the mass matrix M, and the damping 

matrix C. Compute the effective mass matrix lJ&. 

2. Initialize the displacement X(0) and velocity X(0) at time 0. 

Backsubstitute X(0) and X(0) into equation (5.15), and solve for X(0). 

3. Select an integration time step At, and Newmark parameters y and ,0. 

4. Enter Main Loop of Newmark Integration. 

5. Compute the effective load vector @(t + At). 

6. Solve equation (5.21) for acceleration %(t + At). 

7. Compute k(t + At) and X(t + At) by backsubstituting X(t + At) into 

the equations for discrete update in velocity and displacement. 

8. Go to step 4. 

The following abbreviated input file illustrates step 1, and the main loop of the 

Newmark integration, which is steps 4 through 8. 

ABBREVIATED INPUT FILE 

/* Compute (and compute LU decomposition) effective mass */ 

MASS = mass + stiff*beta*dt*dt; 
111 = Decompose(MASS); 

/* Neumsrk Iteration Loop */ 

for(i = 1; i <= nsteps; i = i + 1) < 

/* Cl1 : Update external load, and compute effective load */ 

time = time + dt; 
if( time <= 0.6 set > then < 

eload Cl1 Cl3 = myload[i+l] [2]; 
) else ( 
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eload[l][Il = 0.0 kN; 
3 

R= eload - stiff*(displ + vel+dt + accel*(dt*dt/2.0)*(1-2*beta)); 

/* Cal : Compute new acceleration, velocity and displacement */ 

accel-new = Substitution(lu,R); 
vel-new = vel + dt*(accel*(l.O-gamma) + gamma*accel-new); 
displ-new = displ + dt*vel 

+ ((I - 2*beta) *accel + 2*beta*accel_new)*dt*dt/2; 

/* c31 : Update new response */ 

accel = accel-new; 
vel = vel-new; 
displ = displ-new; 

3 

Figure 5.8 is time-history plot of the roof level displacement. The cu?ve is 

virtually identical to that computed with the modal analysis method. 

1 2 3 4 5 6 

Figure 5.8: Newmark Integration : Lateral Displacement of Roof (cm) Versus 
Time (set) 
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5.1.3 Wilson-8 Method 

For certain types of multi degree-of-freedom structures, such as models of 

multi-story buildings idealized to have only one degree of freedom per story, 

the Newmark method with linear acceleration across the time steps is an 

effective way of computing linear and nonlinear time-history responses. For 

finite element idealizations of structures having more complex geometries, this 

method is sometimes unsatisfactory because of the very short time increment 

required to avoid numerical instability. Unconditionally stable methods are 

required instead. 

A number of unconditionally stable step-by-step methods have been developed 

for dynamic response analysis (see references 114, 121). One of the simplest and 

best of these is the Wilson-B method. 

wr 

/?I AUr( t i) 
AsOr( t i) 

Or( t i) ii,(t i+l) tL(t i + S i) 

*t 
ti t icl 

13 

Ati + 
Si = 8 Ati -I 

Figure 5.9: Linear Acceleration Assumption of Wilson-0 Method 

The basic assumption of the Wilson-0 method is that each component or of the 

acceleration vector fi varies linearly with the time over an extended time step 

si = 8Ati as indicated in figure 5.9. The Wilson-0 method is unconditionally 

stable only for 8 > 1.37.(12714y50) The optimum value of 0 is 1.420815. 
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Numerical Example : In this example we compute the nonlinear 

time-history response of a two story lumped mass pier subject to earthquake 

ground motions simultaneously applied in the IC and y directions. The Wilson-6 

algorithm is used for numerical integration of the underlying equations of 

equilibrium. 

The pier is modeled with two FIBERSD elements with 30 x 40 = 1200 fibers 

and 10 Gauss-Lobatto integration points for each element. The element mesh 

is shown in figure 5.11. The section dimension and material properties are 

shown in figure 5.10. The finite element model has 3 nodes and 2 fiber 

elements. The boundary conditions are full fixity at the base. Axial 

deformations (u,) and torsional rotations (Qz) in each element are likewise 

assumed to be zero. After the boundary conditions are applied, the model has 

only 8 degrees of freedom (d.o.f.). And this is in spite of the 2400 fibers used to 

model the pier deformations. 

The total mass of the first floor is 1500 kg. The second floor has mass 1000 kg. 

We assume for the purposes of this analysis that each floor has the dimensions 

shown in the top right-hand corner of figure 5.10. This effect includes the 

rotational inertias of both floors, namely: 

J, = L712, JY = P/12, 
Mjz = MS Jz, Mjy = MS Jy, 

The lumped mass matrix of each floor in local coordinates is: 

massi = 
Mi 

M.. - 3XZ 
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Figure 5.12: 1940 El Centro Earthquake Record 

The time-history response of the two-story lumped mass pier structure is 

computed for ground motion accelerograms simultaneously applied in the x 

and y directions. The ground motion accelerograms are lO-second samples 

extracted from the 1940 El Centro record by Balling et a1..(g) See figure 5.12. 

The standard way of solving this problem is to note that the total displacement 

vt may be expressed as the sum of the relative displacement v and the 

pseudo-static displacements us that would result from a static-support 

displacement. That is: 

d =v+vs. 

The pseudo-static displacements may be conveniently described by an influence 

vector r representing the displacements resulting from a unit support 

displacement. For a planar structure that only has horizontal degrees of 
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Figure 5.13: Global DOF for Two-Story Lumped Pier 

freedom, ws = r:2rg , where 2rg is the ground displacement and 

the influence vector r simply contains a column of ones.(r2) A slightly modified 

version of this procedure is needed for the multi-component time-history 

analysis. Using rz to represent the influence coefficient vector r in the x 

direction, and ry in the y direction, the effective-force vector generated by the 

earthquake ground motion components is: 

If the structural degrees of freedom are as shown in figure 5.13, then a unit 

displacement in the x direction affects only d.o.f. 1 and 5, and a unit 

displacement in the y direction affects only d.o.f. 2 and 6. Hence 
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r, = and rY= 

The following abbreviated input file shows the essential details of computing 

the multi-component time-history analysis with the Wilson-O method. 

ABBREVIATED INPUT FILE 

/* Compute initial stiffness and mass matrices */ 
stiff = StiffO; 
mass = Mass(Cll); 

/* Manually add lumped mass and rotational inertial to mass matrix. */ 
dof = GetDof(C21); 
massldof CllC11lCdof[llClll = Ml; 
massCdof[llE211~dofCllC2lI = Ml; 
massCdofCl1 C4.11 ldof [II C4Jl = Mjxl; 
massCdof CllC511 Cdof CllC511 = Mjyl; 
dof = GetDof([31); 
massCdof Cl1 Cl11 [dof [II Cl11 = M2; 
massCdof[11[211Cdof[11[211 = M2; 
massCdof CllC411 Cdof[ll C411 = Mjx2; 
massCdof [1lC5llCdofCll C511 = Mjy2; 

mass-inv = Inverse(mass); 

/* Setup Rayleigh damping and damping matrix */ 
rdamping = O.d5; 
A0 = 2*rdamping*wl*w2/(wl+w2); 
Al = 2*rdamping/(wl+w2); 
damp = AO*mass + Al*stiff;, 

/* Setup initial displacement, velocity and acceleration */ 
NodeLoad( 1, [ 0 kN, 0 kN, 0 kN, 0 kN*m, 0 kN*m, 0 kN*ml 1; 
P-ext = ExternalLoadO; 
displ = Solve( stiff, P-ext 1; 
velocity = displ/(l set); 
accel = velocity/(1 set); 

/* Setup the influence vector in both dir-X and dir-Y */ 
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I-X = displ/(l m); ry = displ/(l m); 
accel-dir-x = I; accel-dir-y = 2; 
for( i=l ; i<=total-node ; i=i+l > { 

dof = GetDof(Ci.1); 
if(dofCllEaccel-dir-xl>O) X rxCdof[llCaccel-dir-xl1 Cll=l; 1 
if(dof[l][accel-dir-y]>O) ( ry[dof[11Cacce1-dir~y11[11=1; 3 

3 

/* Define theta value for Wilson-theta method */ 
theta = 1.420815; 
ds = theta*dt; 

/* Wilson-theta time-history analysis */ 

for( stepno=l ; stepno <= total-stepno ; stepno=stepno+l ) ( 

/* Cl1 : Compute effective incremental loading */ 

time = time + dt; 
if( time <= quake-time ) then ( 

P-ext = -mass*( rx*ground-accel-xCstepnol[l] 
+ ry*ground-accel_yCstepnolCll); 

3 else < 
P-ext = -mass*(rx*(O.O m/sec/sec)>; 

3 

dPeff = theta*(P-ext-P-old) + mass*((6/ds)*velocity+3*accel) 
+ damp*(3*velocity+(ds/2)*accel); 

/* c21 : Compute effective stiffness from tangent stiffness */ 
Keff = stiff + (3/ds)*damp + (6/ds/ds)*mass; 

/* c31 : Solve for estimated delta-displacement */ 
dps = Solve( Keff, dPeff ); 

/* C41 : Compute estimated displacement, velocity and acceleration */ 
ds-accel = (6/ds/ds)*dps - (6/ds)*velocity - 3*accel; 
new-velocity = velocity + dt*accel + (dt/2/theta)*ds_accel; 
new-displ = displ + dt*velocity + (dt*dt/2)*accel 

+ (dt*dt/6/theta)*ds_accel; 

/* E51 : Check material yielding and compute new stiffness */ 
dp = new-displ - displ; 
ElmtStateDet( dp ); 
stiff = Stiff(); 

/* CSI : Compute new internal load, damping force, acceleration */ 
Fs = InternalLoad( new-displ ); 
Fd = damp*new-velocity; 
new-accel = mass-inv*( P-ext-Fs-Fd ); 
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**.*.. details of energy balance calculation explained later . . . . . . 

/* [71 : Update histories for this time step */ 

UpdateResponse(); 

P-old = P-ext; 
displ = new-displ; 
velocity = new-velocity; 
accel = new-accel; 

1 

The first and second floor displacements in the x and y directions are plotted 

in figure 5.14 and figure 5.15, respectively. 
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Figure 5.14: Earthquake Response for Two-Story Pier in x Direction 

5 10 
Time (set) 

Figure 5.15: Earthquake Response for Two-Story Pier in y Direction 
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5.2 Energy Evaluation 

5.2.1 Strain Energy 

The concept of strain energy is of fundamental importance in applied 

mechanics.(ig) To illustrate the basic ideas, a gradually increasing static load is 

applied on a prismatic bar. See figure 5.16. 

P 

Figure 5.16: Prismatic Bar Subjected to a Statically Applied Load 

Application of the load produces strains in the bar, and the effect of these 

strains is to increase the energy level of the bar itself. Strain energy is defined 

as the energy absorbed by the bar during the loading process. It is equal to the 

work done by an external load moving through the displacement u, provided no 

energy is added or subtracted in the form of heat. Therefore, 

un = J 0 
Un P(u)du, (5.24) 

where Un is the strain energy at load step number n. 

Sometimes strain energy is referred to as internal work to distinguish it from 

external work. When the force P is slowly removed from the bar, the bar will 

shorten and either partially or fully return to its original length depending 

upon whether the elastic limit has been exceeded. Thus, during the unloading 

procedure, some or all of the strain energy of the bar may be recovered in the 

form of work. 

The load-deflection relationship for a typical nonlinear system is shown in 

figure 5.17. During loading, the work done is equal to the area under the curve 
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Figure 5.17: Elastic and Inelastic Strain Energy 

(i.e., area OABCDO). When the load is removed the load-deflection diagram 

follows line BD. A permanent elongation OD remains when point B is beyond 

the elastic limit. Thus, the elastic strain energy recovered during unloading is 

represented by the shaded triangle BCD. Area OABDO represents energy that 

is lost in the process of permanently deforming the bar. This energy is known 

as the inelastic (or plastic) strain energy.(lg) 

Now let us define IGs = elastic tangent stiffness. The elastic strain energy that 

can be recovered in the unloading process is: 

u 
1 P2 

elastiqn = AreaBcD = - - pz. 
2 ks 

Approximating equation 5.24 by the trapezoidal rule gives: 

un = ATeaoABcDo = i&-l+ ;(pn_, + P,)du,. 

From figure 5.17 and the principle of conservation of energy, it follows that 

u, = ~eEastic,n + Uplastic,n- 

The energy that is lost in the process of permanently deforming the bar is the 

inelastic (plastic) strain energy, and it can be obtained by 

U plasticp = ATeaOABDO = un - UeZastic,n- 



: 
I 

Numerical Example : To illustrate how ALADDIN can be used to calculate 

the strain energy in a nonlinear system response, a nonlinear SDOF spring 

system is presented in figure 5.18. The lumped masses are ml = l.Okg and 

m2 = l.Okg at degrees of freedom 1 and 2 respectively. cl = 1.5N.sec/m and 

c2 = l.ON.sec/m represent the coefficient of viscous damping at degrees of 

freedom 1 and 2 respectively. Springs 1 and 2 both have a bi-linear 

force-displacement relationships which follow the kinematic hardening rule. 

The undeformed springs start out with an initial stiffness ks that lasts until the 

load exceeds the yield force fv. The tangent stiffness then changes to kt. When 

the loading is reversed, the tangent stiffness switches back to the initial stiffness 

ks until the yielding reappears. The elastic force-displacement range is 2. fv. 

This system is subjected to the time-varying load shown in figure 5.19. Our 

analysis will be divided into two parts. First we assume that each time step is 

very long and the load is slowly applied during the load step - in other words, 

the externally applied loads are static, and the underlying equations of 

equilibrium are not influenced by damping or inertial effects. The second part 

of our analysis will account for dynamic effects. 

In the static analysis, a Newton-Raphson procedure is used to calculate the 

load-deflection response of this spring system. We also calculate the elastic and 

plastic components of energy of the spring elements. Except for the spring 

properties and strain energy calculation, the input file is almost the same as for 

the composite bar example presented in the preceding chapter. The 

abbreviated input file is: 

ABBREVIATED INPUT FILE 

/* allocate the matrices fpr storing energy calculations */ 



kl I k2 I 

r; cl ml m2 bP 
lL- 

KC2 

0‘ 
t-t - 

I 

ksl = 2.0 N/cm ks2 = 1.5 N/cm 
ktl = 0.8 N/cm kt2 = 0.5 N/cm 
fyl=18N fy2=15N 
ml = 1.0 kg m2 = 0.5 kg 
Cl = 1.5 Nsec/m c2 = 1 .O N set/m 

Figure 5.18: Nonlinear SDOF Spring System 
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Figure 5.19: Varying Load Applied on Spring System 
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system-energy = CoIumuDnits( Matrix([total_st@p+l,41), CJOUI >; 
element-energy = CoIumnUnitsC Matrix([total_step+l,41), CJoul >; 

/* Increase External Load */ 
for ( k=I; k<=total,step ; k=k+l ) 
x 

/* define force increment for each step */ 

if( kc=20 ) { d-P = [ON; lN1; 3 
if( k>20 && kc=60 ) < d-P = -CO N; 1 Nl; 3 
if( k>60 L& k<=105 ) ( d-P = [O N; 1 N]; 3 
if( k>l05 && kc=155 ) i d-P = -CO N; 1 Nl; 3 
if( k>l55 && k<=190 ) < d-P = CO N; 1 Nl; 3 
if( k>l90 6& k-+200 ) < d-P = -CO N; 1 Nl; 3 
if( k>200 > < d-P = CON; ONI; 3 
P = P + d-P; 

element,energyCk+llCll = element-energy[kl Cl]; 
element-energyCk+llC31 = element-energyCklC31; 

/* i-th Newton-Raphson Iteration */ 
indexCl1 Cl] = 1; indexC21[11 = 1; 
err = to1+1; 
while( err > to1 ) 
c 

d-p = Solve(BigK,d-P); 
p = p + d-p; 

/* state determination for each element */ 

for( ele=l;ele<=2;ele=ele+l ) 
-I 
. . . . . . details about retrieving data from (j-1) . . . . . . 

q = q + d-q; 

/* element converge, j */ 

while( abs(DUx) > 0.00001 N ) 
c . . . . . . details of checking element convergence . . . . . . 3 

.*.... details of updating data at loop j o..... 

/* energy calculations for each element ele */ 

element-energy[k+ll[2*ele-11 = element-energyCk+llC2*ele-11 
+ 0.5*(Q-savedcelel Cl1 +Q)*(q-q_savedCelelCll); 

element-energyCk+ll C2*elel = 0.5*Q*Q/Ks[elel Cll; 
3 
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/* assemble structure resistant force */ 
. . . . . . details of assembling structure resistant force . . . . . . 

/* assemble new structure stiffness */ 
. . . . . . details of assembling new structure stiffness . . . . . . 

d-P = P - PR; 
err = L2Norm(d-P); 

3 /* i-th iteration in Newton-Raphson while loop */ 

...... details of storing response removed ...... 

...... details of updating element history ...... 

/* Reassemble the System Energy */ 

system,energy[k+l][l] = system-energy[k][l] 
+ 0.5*(resultCk+ll Cl1 +resultCkl Cl1 )*(result [k+ll [al-result[k][2]); 

system-energy[k+l][2] = element-energy Ck+llCll +element-energyCk+llC3]; 
system_energy[k+l][3] = element-energy~k+ll~2l+element,energyCk+llC4]; 
system_energyCk+llC4] = system-energyCk+ll C21 - system_energy[k+ll[3]; 

3 /* end of for loop step */ 

In the input file, the matrix element-energy stores the element energy for all 

loading steps. The first column stores the internal work of element 1. The 

second column stores the element elastic strain energy of element 1. The third 

column stores the internal work of element 2. The fourth column stores the 

element elastic strain energy of element 2. A second matrix system-energy 

stores the system energy for all of the loading steps. The first column stores 

the total external work done by the system. The second column stores the 

total internal work of the system (it is the sum of internal work in the 

elements). The third column stores the total elastic strain energy of the system 

(it is the sum of elastic strain energy in the elements). The fourth column 

stores the total plastic strain energy of the system (again, this quantity is the 

sum of plastic strain energies in the elements). 

The load-displacement and energy results are plotted in figures 5.20 through 
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5.25. In the energy plots, you should observe that the plastic energy dissipation 

remains constant during periods of load until another yield point is reached. 
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Dynamic Analysis of Nonlinear SDOF System : We now repeat the 

system analysis assuming that the load is incremented in time steps of only 

0.01 second. The total loading time is 2 seconds. The system response is 

computed for a total of 4 seconds, however, using the Newmark algorithm with 

average acceleration across the time steps. We also calculate the strain energy, 

elastic and plastic energies of the spring elements, and the natural periods of 

the system throughout the dynamic analysis. The abbreviated input file is 

shown below: 

ABBREVIATED INPUT FILE 

/* assemble initial structure tangent stiffness matrix BigK'*/ 
BigK = [ ksl+ks2, -ks2; -ks2, ks2 1; 

/* assemble mass matrix and damping matrix */ 
BigM = 1: ml, 0 kg; 0 kg, m2 1; 
BigC = I: clic2, -c2; -c2, c2 I; 

M-inv = Inverse(BigM); 

/* initial time = Osec conditions */ 
total-step = 400; 
dt = 0.01 set; 
time = 0 set; 

/* Setup initial velocity and acceleration */ 
P =[Ocm;Ocml; 
vel = p/Cl set) ; 
accel = vel/ (1 set> ; 

/* allocate the matrices for storing output history */ 

result = ColumnUnits(Matrix([totaLstep+l,8]), [N,cm,cm,cm,N,N,sec,secl); 
element-energy = ColumnUnits( Matrix(Ctotal_step+l,41), CJoul 1; 

/* compute dynamic periods */ 
eigen = Eigen(BigK, BigM, 121); 
eigenvalue = Eigenvalue(eigen); 

/* increase external load, structure determination */ 
for ( k=l; k<=total-step ; k=k+l > 
I. 

time = time + dt; 
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/* define force increment for each step */ 
. . . . . . details of defining dP . . . . . . 

/* Compute effective incremental loading */ 
dPeff = d-P + ((4/dt)*BigM + 2*BigC)*vel + 2*BigM*accel; 

/* Compute effective stiffness from tangent stiffness */ 
Keff = BigK + (2/dt)*BigC + (4/dt/dt)*BigM; 

/* Solve for d-displacement, d-velocity */ 
d-P = Solve( Keff, dPeff ); 
d-v = (2/dt)*d-p - 2*vel; 

/* Compute displacement, velocity */ 
new-p = p + d-p; 
new-vel = vel + d-v; 

/* Check material yielding and compute new stiffness */ 
for( ele=l ; ele<=2 ; ele=ele+l ) 
< 

. . . . . . details of element state determination . . . . . . 

/* energy calculations for each element ele */ 

element-energyCk+l] C2*ele-ll = element,energy[k+l] CIZ*ele-11 
+ 0.5*(Q-saved[eleltl]+Q)*(q-q-saved[elel [II>; 

if( abs(Q) > 2*FyCelel Cl1 > then ( 
if( kx == Ks[ele][i] > then ( 

delta-Q = abs(srCele][i]) - 2*Fy[ele][I]; 
3 else ( 

delta-Q = abs(Q) - 2*FyCele] Cll; 
J 
delta-x = delta~Q*(1/KtCelelCll-l/KsCelel~ll); 
element-energy[k+l] C2*elel = 

0.5*Q*Q/Ks[ele] Cl] + 0.5*delta-x*delta-Q; 
3 else C 

if{ abs(srCelelCi1) > 2*FyCelell31 1 then ( 
if( kx == KsCele]Cil 1 then ( 

delta-Q = abs(sr[ele][i]) - 2*Fy[ele] [I]; 
delta-x = delta-Q*(l/KtCele] Cl1 -l/KsCelelCll); 
element-energyCk+llC2*elel = 

0.5*Q*Q/Ks~elelCl1 + 0.5*delta-x*delta-Q; 
3 else ( 

if(((Q>O~)&&(srCelelCll~ON~)iI((QCON)&&~srCelelCil~OEJ~)) 
then C 

element-energy[k+l]C2*elel = 0.5*Q*Q/KtCelel[ll; 
3 else ( 

element_energy[k+l][2*elel = 0.5*Q*Q/KsCelel[I]; 
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3 
3 

3 else { 
element,energy[k+ll[2*elel = O.5*Q*Q/KsCelelClI; 

3 
3 

3 /* ele */ 

/* assemble new structure stiffness */ 
BigKCll~ll = tangent[ll [I] + tangent[2] El.1 ; 
BigKCll C21 = -tangent[21Cll; 
BigKC21Cll = -tangentC21Cll; 
BigKC2lC21 = tangentC21Cll; 

/* assemble new internal load Fs, damping load Fd, and acceleration */ 
FsCll Cl1 = PReCll Cl1 - PReC21ClI; 
Fs L-21 L-11 = PReC21 [II; 

Fd = BigC*new-vel; 
new-accel = M-inv*( P-Fs-Fd 1; 

/* store analysis results */ 
o..... details of storing analysis results . . . . . . 

/* compute eigen problem */ 
eigen = Eigen(BigK, BigM, 121); 
eigenvalue = Eigenvalue(eigen); 

result[k+l] CT] = 2*PI/sqrt( eigenvalueCll[ll 1; 
resultCk+ll C81 = 2*PI/sqrt( eigenvalueC21 [II 1; 

/* updating history for each load step k */ 
for( ele=l ; ele<=2 ; ele=ele+l > 
x . . . . . . details of updating element history . . . . . . 3 

/* update results for this step */ 
P = new-p; 
vel = new-vel; 
accel = new-accel; 

) /* k in for0 loop, increase to next time step */ 

Points to note in input are: 

1. The matrix result stores the computation results. Each column stores: 

/* c01umnc11 : external applied load at end node (2) */ 
/* columnC21 : total elongation at end node (2) = C31+[4l */ 
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/* colllmn[31 : element elongation 1, node 1 */ 
/* COl~C41 : element elongation 2, node 2 */ 
/* c01umnc51 : element force I, node 1 */ 
/* column[6] : element force 2, node 2 */ 
/* column[71 : dynamic natural period I (Tl) for each step */ 
/* column[83 : dynamic natural period 2 (T2) for each step */ 

2. The matrix element-energy stores results of the element energy 

calculation. Each column stores: 

/* c01umnc11 : internal strain energy for element 1 */ 
/* column[21 : elastic strain energy for element 1 */ 
/* c01umIlc31 : internal strain energy for element 2 */ 
/* c01umn[41 : elastic strain energy for element 2 */ 

Figures 5.26 and 5.27 show the first and second modal periods versus time for 

our nonlinear analysis. We note that: 

1. At any time in the time-history response, the mass-spring system will 

assume one of four possible states of stiffness. These states are due to 

various stages of spring stiffness yielding of course. The combinations are: 

first, both springs are elastic; spring 1 yields and spring 2 is elastic; 

spring 1 is elastic and spring 2 yields, and finally, both springs have 

yielded. In its unloaded state, the mass-spring system has a first mode 

period of 0.595 seconds and a second mode period of 0.271 seconds. The 

first mode period elongates to 0.961 seconds and the second mode period 

elongates to 4.591 seconds when both springs are in a post-yielding state. 

2. The average natural period of the system during the loading period is 

shown to indicate the period shift of the system ((Ti)cavercrge = 0.827sec 

and (TQaverage = 0.374sec). 
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3. Figures 5.26 and 5.27 are important because they provide a rational basis 

for assessing the validity and limitations of simplified procedures for the 

design of nonlinear systems. Rather than work directly with a 

time-varying nonlinear system, a number of simplified analysis procedures 

are based on the behavior of an equivalent elastic system. The equivalent 

system will have a damping ratio and effective natural period that is a 

function (most likely an empirical function) of the system ductility. 

The strain energy plot is shown in figure 5.28. The elastic energy is gradually 

damped to zero. The plastic energy is still increasing after the external loading 

ceases at time 2 seconds (this is because of the inertial effects remaining on the 

system). Finally, total elongations of the static and dynamic systems are 

compared in figure 5.29. The elongation of the static system remains constant 

after the loading ceases, while the elongation of the dynamic system gradually 

vibrates back to zero residual displacement. 
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5.2.2 Energy Balance Calculations 

In the analysis of nonlinear dynamic problems, it is usually advisable to 

perform an energy balance check as a means of validating that the 

computations are stable and accurate. At the highest level of abstraction we 

can say that the system energy at time (n + l)At should satisfy the equation: 

Wzl + T,,, = W;$ (5.25) 

where W (without subscripts and superscripts) represents work done and T 

represents kinetic energy. In physical term, equation 5.25 states that the work 

done by external loads is converted to kinetic energy, and to energy stored 

either elastically or dissipated by plastic deformations.(13) 

The internal work, Wz”,, represents the work done by nodal loads that are 

developed from the straining of materials. It is given by: 

wy$yl = w?” + J 
(n-t-1)At 

wntdt. 
nAt 

(5.26) 

A discrete approximation to equation 5.26 may be obtained by noticing that: 

Here {hjn represents the velocity vector at time step n, and (Ri”t}n 

represents the resisting nodal loads at time step n. Approximating the integral 

in equation 5.26 by the trapezoidal rule gives: 

The external work, Wz$, represents the work done by changes in externally 

applied loads moving through displacement of the system degrees of freedom. 
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It is given by: 

(5.28) 

A suitable discrete approximation for W:z\ can be obtained from equation 5.27 

by replacing superscript “int” by “ext”; i.e., 

wzl = W,-” + +};{R’““)n + {Jj};+l{Re=t)n+r). (5.29) 

For systems that are damped, the resisting nodal load {Rint) includes at time 

step n is a combination of straining force and damping force components. The 

damping force at time step n is given by: 

(Rwnp)n = [Cl,{% 

The straining force {Rstiff),,, is obtained directly from the stress-strain curve. 

Therefore: 

{Rint)n = {Qzmp)n + {Rtifp)n. (5.30) 

Finally, the kinetic energy T,+r is given by: 

T n+1= ;{~]:;,,[Ml{~~n+l~ (5.31) 

To construct an energy balance, we note that in general equation 5.25 is not 

satisfied exactly. The quality of a numerical solution can be measured with the 

convergence criterion: 

(5.32) 

where e is a tolerance factor and the absolute magnitude bars are a precaution 

against small negative values of Wmt caused by spurious numerical errors. 

Terms within parentheses on the right-hand side of equation 5.32 represent the 

total energy in the system. The left-hand side is the energy error. 
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Numerical Example : We now extend the previous two-story lumped mass 

pier example with the energy balance calculations. The following abbreviated 

input file is positioned after the end of each load step calculation, but before 

the updating of the element history response. 

ABBREVIATED INPUT FILE 

/* calculate the energy balance, Wint(n+l) + T(n+l) = Wext(n+l) */ 

trans-vel = Trans(velocity); 
trans-vel-new = Trans(new,velocity); 
trans.-dis-new = Trans(new,displ); 

if( stepno == 1 ) then C 

Wint-fs = dt/2*(trans_vel_new*Fs); 
Wint-fd = dt/2*(trans_vel,new*Fd); 
T = (trans-vel_new*massQneu_velocity)/2; 
Wext = dt/2*(trans_vel,new*P_ext); 

energy Cl1 El1 = Wint-fs[ll Cl]; 
energy Cl1 121 = Wint-fd[l] [I] ; 
energyCl1 C31 = TCll Cl]; 
energyCll II41 = Wext[ll[ll; 

3 else ( 

Wint-fs = dt/2*(trans,vel*Ps_int + trans-vel,new*Fs); 
Wint-fd = dt/2*(trens_vel*Pd_int + trans-vel,new*Fd); 
T = (trans-vel_new*mass*new_velocity)/2; 
Wext = dt/2*(trans_vel*P_old + trans-vel-new*P-ext); 

energylktepnol Cl1 = energyktepno-II Cl1 + Wint-fs Cl1 Cl]; 
energy[stepnol[2] = energyktepno-11 r.21 + Wint-fdCl1 Cl]; 
energyCstepnol[31 = TLXI Cl]; 
energyCstepnolC41 = energy[stepno-llC41 + Wext[llCll; 

The matrix energy stores the results for each time step. The first column 

contains the internal energy done by straining force, the second column 

contains the internal energy done by damping force, the third column stores 

the kinetic energy, and the fourth column stores the external energy. 
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The overall results of our energy balance calculation are plotted in figure 5.30 

and figure 5.31. figure 5.31 shows a great match of the internal energy and the 

external energy, therefore proving that the analysis of this nonlinear dynamic 

problem has stable and accurate computation. Also note from figure 5.31 that 

after the earthquake ground motions have ceased, there is no more external 

energy input into the system. Hence, the curve IVet versus time is constant 

over the response interval t E [lo, 151 seconds. 
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CHAPTER 6 

Analytical Studies for Bgse Isolation of Bridges 

6.1 Introduction to Base Isolation 

Base isolators are artificial elements that protect highway bridge structures 

from the full intensity of seismic attack. They are usually positioned between 

the bridge piers and abutments, and the deck, and are designed for high energy 

dissipation without a loss in strength occurring. In principle at least, this 

capability enables the remainder of the structure to respond elastically, and 

suffer no structural damage. 

A number of mechanisms contribute to base isolation protection, including 

high levels of viscous damping and energy dissipation, and movement of the 

bridge system’s natural periods of vibration to regions of low dynamic 

response. High levels of viscous damping and energy dissipation are desirable 

because they lower the forces and displacements a structure must resist. 

Studies of earthquake response spectra indicate that similar improvements in 

performance will occur when the natural period of a structure is moved to a 

region having low spectral accelerations. Collectively these mechanisms lower 

the variation in bridge responses caused by a wide range of ground motion 

inputs, and reduce the likelihood of undesirable concentrations of ductility 

demand. Unfortunately, reductions in lateral forces are sometimes accompanied 

by increases in structural displacements. A balance in these criteria is therefore 

required.(rfi2@‘) 

Most of the current isolation systems fall into two categories - elastomeric 
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isolation systems and sliding isolation systems. Elastomeric bearings are 

constructed from laminated rubber bearings reinforced with steel plates. A 

lead plug provides the isolator with stiffness to withstand moderate lateral 

loads without yielding, and a capacity to dissipate large quantities of energy 

during high lateral loads. Sliding isolation systems (e.g., Teflon-slider sliding 

on a stainless steel plate) protect a superstructure by decoupling it from the 

ground. They dissipate energy by means of frictional behavior. Restoring force 

and re-centering capabilities are provided by helical springs (or by springs) in 

the form of rubber cylinders.(31) 

The purposes of this chapter are two-fold. First, we formulate a nonlinear fiber 

finite element for the modeling of elastomeric isolators. Since fiber elements 

cannot model sliding isolation elements accurately, this aspect of isolation 

protection will not be discussed further in this chapter. The second objective 

for this chapter is application of the element to the nonlinear time-history 

analysis of a four-span bridge structure. 

6.2 Lead-Rubber Bearings 

The lead-rubber bearing is a laminated rubber bearing containing a lead plug 

insertion, as shown in figure 6.1. The lead plug provides energy dissipation for 

seismic response and stiffness for static loads and small lateral loads (e.g., wind 

loadings). Lead-rubber bearings have been used extensively in bridge 

structures that must resist severe seismic attack, and are an economical and 

effective solution for bridge isolation, incorporating period shifting and 

increased damping in a single device.(35) 
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Figure 6.1: Lead-Rubber Laminated Bearing 

6.2.1 Material Properties 

There are several good reasons for constructing the bearing center from lead. 

The material properties of lead include (a) a low yield shear strength [about 10 

MPa (1.45 ksi)]; (b) su ffi ciently high initial shear stiffness [the shear modulus 

G is approximately equal to 130 MPa (18.8 ksi)]; (c) post yielding behavior is 

essentially elastic-plastic; and (d) good fatigue properties for plastic cycles. 

Experimental studies indicate that lead responds essentially with 

elastic-perfectIy plastic loops. Hence, for practical purposes the post-yielding 

isolator stiffness is equal to the stiffness of the rubber bearing alone. The 

global hysteresis loop is a bi-linear solid with an initial elastic stifl’ness 

kl = lOk, where k,. is the stiffness of rubber, then followed by a post yield 

stiffness k2 = k,.(37?43) The size of the lead plug is proportional to the yield 

strength of the isolator. The post-yielding stiffness is proportional to the 

rubber bearing stiffness, and increases with the plan size of the rubber bearing 

and reductions in the isolator height. These trends are shown in figure 6.2. 
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Figure 6.2: Effects of Geometrical Variations of the Lead Plug and Rubber 
Bearing on the Overall Response 

6.2.2 Lead-Rubber Isolator Modeling in ALADDIN 

We now consider the problem of modeling the lead-rubber isolator with the 

fiber element in ALADDIN. Because the lead-rubber isolator is composed of 

two different materials, each with its own shear modulus, the isolator behavior 

is modeled with a FIBER-SDS element (see APPENDIX A for the definition and 

usage of FIBER3DS element). 

Figure 6.3 is a plan view of a lead-rubber isolator, showing the section 

dimensions and positions of the fiber elements. Each quadrant of the isolator is 

modeled with two fibers, one for the lead, and a second for the rubber. The 

fibers are positioned at the centroid of the material quadrant. The material 

properties are as mentioned in the previous section. 

Figure 6.4 compares the force-displacement relationship for the FIBER3DS 

element with the experimental data generated by Robinson.(37) Since there is a 

good match between these curves, we conclude that the bi-linear fiber element 

will provide sufficient modeling accuracy for this study. 
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Figure 6.3: Modeling of Lead-Rubber Isolator 
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Figure 6.4: Force-Displacement Hysteresis Loops for Lead-Rubber Isolator 



6.3 Modeling of Isolated Bridges 

The modeling of an isolated structure can take on varying levels of complexity. 

The simplest case is a single degree-of-freedom model with a linear-elastic 

isolation system and a rigid superstructure. The most complex case is a fir11 

three-dimensional model of both the isolation system and the superstructure, 

with a nonlinear isolation system and nonlinear frame type superstructure. 

Shenton and Taylor (42) have provided a spectrum of analytical models that can 

be used in the analysis of base isolated structures. Maragakis and Saiidi(28) 

present some simple analytical models of lead-rubber base isolated bridges. A 

detail discussion on techniques for modeling and analyzing and designing base 

isolated highway bridges can be found in Priestley’s book.(35) 

6.4 Analysis Methods 

Generally speaking, the analysis of a base isolated structure is more 

complicated than the analysis of a conventional structure which may not need 

to withstand seismic loadings. This situation is not helped by the lack of 

guidelines for the analysis of base isolated structures.(42) By resorting to first 

principles, however, a number of avenues exist for simplifying the analysis. 

First, there is no need to take into account nonlinear response of the pier 

elements. The pier masses and their own modes of vibration should be part of 

an analysis, however, since isolation of the lower-frequency modes involving the 

deck mass may increase the importance of higher-frequency modes. Because 

the bridge superstructure is expected to remain essentially elastic, even for the 

largest seismic events, its behavior can be modeled with linear elastic elements. 
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During the preliminary stages of design, effects of soil-structure interaction and 

the coupling effects of the deck may be neglected. Refined analyses are 

required for detailed bridge design. For example, by modeling the deck and 

pier with linear beam elements having mass, a MDOF model can be used to 

account for coupling effects of the deck. The isolation system will be modeled 

with linear equivalent highly damped elements, or, more appropriately, with 

bilinear elements.(35) In practice a nonlinear timehistory analysis is almost 

always conducted. 

The AASHTO Guide Specification&) contain two analysis procedures for 

bridges having a variety of spans, geometric complexity, and the Seismic 

Performance Category. Procedure 1 is the single-mode method of analysis. 

Procedure 2 is the multi-mode method of analysis. Both the single and 

multi-mode methods of analysis for seismic isolation design assume that energy 

dissipation of the isolation system can be expressed in terms of equivalent 

viscous damping, and the stiffness of the isolation system can be expressed as 

an effective linear stiffness. These assumptions simplify the required 

complexity of analysis enormously. These guidelines stipulate that for isolation 

systems without self-centering capabilities, or for isolation systems where the 

effective damping (% of critical) exceeds 30 percent, a three-dimensional 

nonlinear time-history analysis shall be performed. 

1. Single Mode Spectral Analysis : The single mode method of analysis 

given in the AASHTO Standard Seismic Specifications(2) is appropriate 

for seismic isolation design. The only difference is that the statically 

equivalent force is determined associated with the displacement across 

the isolation bearings, and the effective linear stiffness of the isolators 
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used in the analysis shall be calculated at the design displacement. 

2. Multimode Mode Spectral Analysis : The guidelines given in 

Section 5.4 of the AASHTO Standard Seismic Specifications are also 

appropriate for the equivalent linear response spectrum analysis of an 

isolated structure with the two modifications. First, the isolation bearings 

are modeled by use of their effective stiffness properties determined at the 

design displacement. In the second modification, the ground response 

spectrum is modified to incorporate the damping of the isolation system. 

3. Time History Analysis : A nonlinear time-history analysis is generally 

considered to be the most complete and time-consuming structural 

analysis method. When applied correctly, however, it can provide the 

most reliable results for the variation of forces and displacements during 

earthquake ground motion. The frequency content of ground motion 

accelerations should be scaled so they closely match the appropriate 

ground response spectra for a particular site. In addition, the analytical 

model should incorporate the nonlinear deformational characteristics of 

the isolation system. 

A comparison of AASHTO recommended analytical methods applied to a 

4-span continuous bridge is presented by Mayes.@) The California Department 

of Transportation (CALTHANS) has also proposed two methods for the 

analysis of bridge isolated with bearings whose hysteresis behavior can be 

appropriately represented by a bi-linear model. In the first CALTHANS 

proposed method, the hysteresis 

idealized by a bi-linear model in 

behavior of a base-isolated regular bridge is 

the direction of consideration. Then with the 
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hysteresis loop of the entire base-isolated bridge in hand, an empirical model is 

used to determine the effective period and equivalent viscous damping ratio of 

the bridge. In the second CALTRANS proposed method, an empirical model is 

used to determine the effective stiffness and equivalent damping ratio of 

isolation bearings rather than the base-isolated bridge itself. A modal strain 

energy method combined with the concept of component energy ratio was 

utilized to formulate the “composite damping ratio” of the entire base-isolated 

bridge.c4i) 

6.5 Combination of Isolator and Support Properties 

When a base isolator is installed between the top of a bridge column and 

beneath the deck structure, the parameters of the column combine with those 

of the isolator. The overall characteristics of the superstructure and isolation 

system reflect a combination of individual composite dynamic parameters.(5~43) 

For most practical situations, the superstructure mass is much greater than the 

column mass, and hence the first mode of vibration is dominated by 

displacements of the superstructure. The second mode, in comparison, involves 

lateral motion of the top of the column with little movement of the 

superstructure (see, for example, figure 6.5). 

6.6 Example of Nonlinear Time History Bridge Analysis 

In this section we use ALADDIN for a threedimensional nonlinear 

time-history analysis of a four-span base isolated highway bridge. The 

particulars of this example are taken from the text of Priestley et al..(35) The 

longitudinal view of the bridge geometry is shown in figure 6.7. The pier and 



(a)Non-isolated (b)Isolated 

Figure 6.5: Lateral Direction Mode Shapes 

deck section properties are shown in figure 6.9. Capacities of the piers and 

isolators are listed in table 6.1. The isolators are assumed to have 

elastic-perfectly plastic behavior, which means no strain hardening after 

yielding. The deck and piers are assumed to remain elastic during the dynamic 

responses. We choose the 1940 El Centro SOOE record (see figure 6.6) as the 

input earthquake with the peak ground acceleration scaled to 0.59. 

0 1 2 3 4 6 7 8 9 10 

Figure 6.6: 1940 El Centro SOOE Record 

The finite element mesh is shown in figure 6.8. The deck and columns are 

modeled with elastic 3-D frame elements (i.e., element type FRAME3D). Only 

the isolators sre modeled as 3-D nonlinear fiber elements with bi-linear 
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Figure 6.7: Elevation Plan of Isolated Bridge 
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Figure 6.8: Finite Element Mesh of Isolated Bridge 
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Figure 6.9: Pier and Deck Section Properties 

Table 6.1: Pier and Isolator Capacities 
secant stiffness (M/m) yield strength (MV) 

isolator 1,5 at abutments 5300 2100 

isolator 2 16100 2100 

isolator 3 11500 2100 

isolator 4 47000 2100 

pier 2 30700 

pier 3 124400 

pier 4 13650 
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shear-displacement response (i.e., element type FIBER-3D). The lower ends of 

the piers and abutments are fully fixed. We also assume that there are no 

longitudinal deformations and twisting at the both ends of the bridge deck. In 

total there are 21 elements, 8 different element attributes and 98 degrees of 

freedom in this model. 

Eigenvalue Analysis : The following fragment of code shows the essential 

details of code needed to compute the first two modes of vibration, and their 

natural periods. 

ABBREVIATED INPUT FILE 

/* Form stiffness matrix and mass matrix */ 
stiff = StiffO; 
mass = Mass([ll); 

/* Compute first two eigenvalues, periods, and eigenvectors */ 

no-eigea = 2; 
eigen = Eigen(stiff, mass, Cno-eigenl); 
eigenvalue = Eigenvalue(eigen); 
eigenvector = Eigenvector (eiged; 

Tl = Z*PI/sqrt( eigenvalueCll Cll 1; 
T2 = Z*PI/sqrt( eigenvalue t21 El1 1; 

The first two modes of vibration for both the non-isolated and isolated bridges 

are shown in the three-dimensional plots of figures 6.10, 6.11, 6.12 and 6.13. 

We can see from these plots that the non-isolated bridge deck deforms in 

cosine and sine curves. The columns deform elastically. For the isolated 

bridge, the deck undergoes a rigid body displacement. Most of the 

deformations in the piers occur at isolators. Also note that the natural periods 

for the first two modes have been significantly shifted, from (0.71 set, 0.57 set) 

to (2.02 set, 1.97 set). 
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Mode shape Bridge distance (m) 

Figure 6.10: First Mode of Non-Isolated Bridge, Tl = 0.71 set 
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Figure 6.11: Second Mode of Non-Isolated Bridge, T2 = 0.57 set 
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Figure 6.12: First Mode of Isolated Bridge, Tl = 2.02 set 

Mode shape -1 0 
Bridge distance (m) 

Figure 6.13: Second Mode of Isolated Bridge, T2 = 1.97 set 
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Nonlinear Time History Analysis : We now extend the previous analysis 

to time-history analysis. The time-history analysis assumes equivalent viscous 

damping of 5 percent in the form of Rayleigh damping. A second time-history 

analysis is computed for a non-isolated bridge, thereby enabling comparison of 

the isolated and non-isolated responses, and assessment of the benefits of base 

isolation. The following script of code shows the essential details of the 

non-linear Newmark analysis: 

ABBREVIATED INPUT FILE 

while(stepno=l; stepno <= total-stepno; stepno=stepno+l) < 

/* Update time and step no */ 
time = time + dt; 

/* Compute effective incremental loading */ 
if( stepno <= dimenCl1ClJ ) then ( 

P-ext = -mass*r*Elcentro[stepno][l]; 
3 else C 

P-ext = -mass*r*(O.O m/sec/sec); 3 

dPeff = P-ext - P-old + ((4/dt)*mass+2*damp)*velocitg + 2*mass*accel; 

/* Compute effective stiffness from tangent stiffness */ 
Keff = stiff + (l/dt)*damp + (4/dt/dt)+mass; 

/* Solve for d-displacement, d-velocity */ 
dp = Solve( Keff, dPeff); 
dv = (2/dt)*dp - 2*velocity; 

/* Compute displacement, velocity */ 
new-displ = displ + dp; 
new-velocity = velocity + dv; 

/* Check material yielding and compute new stiffness */ 
ElmtStateDet( dp ); 
stiff = StiffO; 

/* Compute new internal load, damping force, and acceleration */ 
Fs = IntemalLoad( new-displ ); 
Fd = damp*new,velocity; 
new-accel = mass-inv*( P,ext-Fs-Fd >; 

/* tolerance is satisfied, update histories for this time step */ 



UpdateResponseo; 
P-old = P-ext; 
Fs-old = Fs; 
Fd-old = Fd; 
displ = new-displ; 
velocity = new-velocity; 
accel = new-accel; 

1 

Figure 6.15 through 6.30 summarize a variety of displacement, shear force, and 

enere;y computations versus time for the isolated and non-isolated bridge 

structures. Points to note are: 

1. The deck displacements at the pier top are shown in figure 6.15 and 6.16 

for both the non-isolated and isolated bridges. As expected, the isolated 

bridge undergoes larger displacements than the non-isolated bridge. For 

example, at Pier 4 the maximum displacement of the isolated bridge is 

about 3.2 times larger than the maximum displacement of the 

non-isolated bridge (see figure 6.19). Also, because the isolators exhibit 

nonlinear behavior, the isolated bridge has a 0.02772 residual displacement 

after the earthquake response has ceased. 

2. The shear forces at the bottom of the piers are plotted in figure 6.17 and 

6.18. Let us consider shear forces in the non-isolated bridge first. Pier 3 

has the shortest height - it has the highest stiffness, and attracts the 

highest concentrations of shear force accordingly. For the isolated bridge, 

the isolators have been designed so that the effective stiffness and 

displacements of the piers are similar. Hence, the structural response is 

quite regularized. The isolators also reduce the maximum bottom shear 

force in pier 3 by a factor of 6 (see figure 6.20). Another thing we want to 

point out is that once the isolators have yielded, displacements of the 



bridge deck can occur without a corresponding increase in isolator shear 

forces. This observation is consistent with our assumption of 

elastic-perfectly plastic behavior. 

3. The force-displacement responses for the isolators are shown in figure 6.21 

through 6.24. Noting that the isolator ductility PD may be defined as 

AP 
ClD =--1, 

ADE 

and the effective global ductility j&G as 

AP 
PG = A,-I-ADE’~’ 

where Ap, As and ALE are defined in figure 6.14, we can calculate the 

ductilities of each pier-isolator system. 

Elastic pier B&linear isolator Total 

Figure 6.14: Definition of Structure Ductility 

Table 6.2: Ductility of Pier-Isolator System I I 1 
abutments 1,5 pier 2 pier 3 pier 4 

PD 1.41 1.64 1.45 2.78 

PG 1.41 1.42 1.41 1.40 

The results are summarized in table 6.2. It is evident that by designing 

the individual isolators for a different ductility demand, the overall bridge 
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system can be designed so that the ductility demand on the pier systems 

(i.e., pier + isolator) is about the same. This strategy of design 

regularizes the structural response. 

4. Figures 6.25 and 6.26 plot components of the energy balance analysis for 

the non-isolated and isolated bridges, respectively. From figure 6.27 we 

can see that the energy history of the isolated bridge is much higher than 

the non-isolated bridge. This is because displacements in the isolated 

bridge response are much larger than the non-isolated bridge, and 

because of the plastic strain energy (hysteresis energy) of the isolators. 

5. The shear force-displacement response diagrams for the isolators (see 

figure 6.21 through 6.24) can be used to compute contours of elastic and 

plastic shear strain energy history. The results of these computations are 

plotted in figure 6.28. Because the non-isolated bridge response is 

assumed to be elastic, the internal strain energy caused by stiffness forces 

will gradually return to zero after the earthquake ends. But for the 

isolated bridge, the internal strain energy (also caused by stiffness forces) 

has a residual energy after the earthquake ends. This residual energy is 

the plastic shear-strain energy (or hysteretic energy) dissipated by the 

isolators. The latter results are shown in figure 6.29. 

6. The bridge strain energy is equal to the sum of strain energies in the 

isolators, piers and deck. Therefore the strain energy of the deck and 

piers is equal to bridge strain energy minus total isolator strain energy. 

The timehistory of these strain energy components is shown in figure 

6.30. Because the strain energy components are roughly proportional to 
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the square of the bridge displacements, higher strain 1eveIs of energy in 

the bridge components means a higher possibility of damage. Figure 6.30 

clearly shows that the peak values of strain energy in the isolated bridge 

deck are lower than those in the conventionally supported bridge deck. 

Hence, we conclude that the isolation system protects the bridge 

superstructure, as required. 

174 
I 



Time (set) ‘- 

Figure 6.15: Deck Displacement of Non-Isolated Bridge 
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Figure 6.16: Deck Displacement of Isolated Bridge 
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Figure 6.17: Bottom Shear of Non-Isolated Bridge 
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Figure 6.18: Bottom Shear of Isolated Bridge 
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Figure 6.19: Deck Displacement Comparison at Pier 4 of Bridges 
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Figure 6.20: Bottom Shear Force Comparison at Pier 3 of Bridges 
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Figure 6.21: Force-Displacement Response of Isolators at Abutment 1,5 
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Figure 6.22: Force-Displacement Response of Isolator at Pier 2 
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Figure 6.23: Force-Displacement Response of Isolator at Pier 3 
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Figure 6.24: Force-Displacement Response of Isolator at Pier 4 
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Figure 6.25: Energy History of Non-Isolated Bridge 
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Figure 6.26: Energy History of Isolated Bridge 
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Figure 6.27: Energy History Comparison of Non-Isolated Bridge and Isolated 
Bridge 
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Figure 6.28: Elastic and Plastic Strain Energy of Isolators 
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CHAPTER 7 

Conclusions and Future Work 

7.1 Conclusions 

In the general area of computational technology for engineering, the 1990s are 

shaping up to be the decade of global networking and multimedia. These 

advances will allow for the prototyping of interactive computing environments 

tailored to the life-cycle development of complex engineering systems. For 

these environments to be commercially successful, they will need to support 

development of engineering systems from multiple viewpoints, and at multiple 

levels of abstraction. Engineers should be provided with the tools to integrate 

once disparate disciplines. While a strong need for the merging of matrix 

computations with finite elements (and optimization, control and graphics) is 

already evident, many other possibilities exist. For instance, now that many 

companies are engaging in business practices that are geographically dispersed, 

engineers will soon expect connectivity to a wide range of information services 

- electronic contract negotiations, management of project requirements, 

design rule checking over the Internet, and availability of materials and 

construction services. The participating computer programs and networking 

infrastructure will need to be fast and accurate, flexible, reliable, and of course, 

easy to use.(17p47) 

With these observations in mind, our long-term goal for ALADDIN is to 

provide engineers with such a computational problem-solving environment. 

Version 1.0 of ALADDIN is simply a first step in this direction. For Version 1.0 
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the emphasis in development has focused on the basic system specification and 

its application to matrix and finite element problems. This work involved the 

determination of data types, control structures, and functions that would allow 

engineers to solve a wide variety of problems, without the language becoming 

too large and complicated, and without extensibility of the system being 

compromised. 

This dissertation contains material that will become ALADDIN Version 2. A 

new fiber element that includes flexural and shear deformations, and is capable 

of modeling bi-linear material behavior, has been added to the finite element 

library for Version 2. Behavior and accuracy of this new element has been 

verified through studies of the hysteretic forcedisplacement relations in a 

lead-rubber isolator. Furthermore, a nonlinear time-history analysis of a base 

isolated bridge has been computed by modeling all of the isolators with the 

fiber elements. The energy-balance calculations and plots of displacement 

versus time indicate that during a severe earthquake ground motion, the 

isolators protect the bridge superstructure and pier columns by reducing shear 

forces in the pier columns and by reducing the strain energy absorbed by the 

deck and columns. 

From the beginning of this project the capabilities of the ALADDIN 

computational environment have been growing steadily. The suite of 

ALADDIN test problems has been expanded for Version 2.0, and now includes 

applications of design rule checking, nonlinear numerical algorithms, 

linear/nonlinear time-history analyses of structural systems involving 

multi-component earthquake ground motions, and energy balance calculations. 

The implementation of basic design rule checking required only very minor 
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extensions to the language. Now nonlinear numerical analysis can be computed 

with a variety of algorithms. The application problems involving multiple 

components of ground motion input, and energy balance calculations are simply 

two cases of how structural analyses can be customized from the ALADDIN 

input file. There is no need to change the ALADDIN program source code. 

In projects of this type, program user feedback is necessary component of 

ensuring the software works as advertised. Since the Internet is now the most 

powerful resource for information dissemination, in April 1996 a World Wide 

Web (WWW) home page for ALADDIN was created (the home page address is 

http://www. isr. umd. edu/-austin/aladdin. html). The home page contains an 

assortment of example problems and the source code to ALADDIN Version 1.0. 

So far more than 1,100 copies of the program have been downloaded, and 

comments have been sent back to authors. According to those comments and 

our observations, our goals for future work are as follows. 

7.2 F’uture Work 

Because ALADDIN is a problem-solving environment for engineers, the future 

work will be guided by the needs of engineering analysis. Extensions of the 

software to handle new types of engineering problems are required, as are 

enhancements to the ALADDIN software. 

7.2.1 Engineering Side 

The current targeted application areas include: 

1. Hybrid Control of Base Isolated Highway Bridge : This 

dissertation has been concerned with the construction of models for base 
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isolated highway bridge structures. The next logical step in this research 

is hybrid control of isolated highway bridges. Studies of the active hybrid 

control require models of the bridge response due to earthquake loads, 

and the collection of response data for adjust of the response via feedback 

control. Our current thinking is that this extension can be done by 

adding just a few extra functions to the program, and perhaps by linking 

ALADDIN to the MATLAB Control and Optimization Toolboxes.(48) 

2. Dynamics of Tethered Airship Systems : This application area is 

concerned with the formulation of mathematical models for airships 

anchored to the ground by a Kevlar tether. The airships will fly at an 

altitude of 15,000 ft, and will carry a surveillance payload. Before a 

variety of these systems can become operational, however, detailed 

mathematical models of the aerostat system that include interaction of 

the structural and mechanical systems, aerodynamics, and meteorology 

(e.g., wind, downdrafts, and electrical storms) are needed. 

3. Structural Optimization : The language specification will be extended 

so that engineers can describe design objectives, design constraints, and 

design parameters, for general engineering optimization problems in a 

compact manner. The issue of “compactness” is particularly relevant for 

optimization problems that involve finite element analysis because they 

often contain hundreds, and sometimes thousands, of constraints. 

Further work is needed to determine how groups of similar constraints 

can be bundled into groups, and how ALADDIN’s control structures can 

be exploited to write down these constraints in a compact manner. Once 
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the issue of constraints is sorted out, the pathway for describing the 

design parameters and objectives should (hopefully) become clearer. 

Again, rather than implement our own homegrown optimization 

algorithms, links to the MATLAB Optimization Toolbox will be provided. 

4. Performance Based Design : As pointed out in chapter 1, the goal of 

performance-based engineering is to define performance objectives for 

various types of structures, and to control the risk associated with each 

limit-state to a predefined level of acceptability. ALADDIN’s scripting 

language gives users the ability to collect and manipulate the data 

generated by the analyses, to choose performance objectives, and to 

define levels of acceptability. The work presented in this dissertation is 

one step in this direction, and there is a need to extend the energy 

calculations so that they are coupled to estimates of structural damage 

caused by nonlinear hysteretic deformations. Performance based studies 

should also account for system reliability, perhaps by computing statistics 

of extreme response caused by a small ensemble of ground motion inputs. 

7.2.2 Software Side 

Advances in the engineering capabilities of ALADDIN need to be accompanied 

by appropriate improvements in software support. These enhancements 

include: 

1. New Library .of Functions : When a new element is added to the 

program, some related functions may be needed in the matrix, finite 

element or kernel libraries. For example, the function ElmtStateDet 0 

was added to the finite element library for state determination of the fiber 
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element deformations. The function GetStress was added for design 

rule checking. There is a need to improve the instructions/guidelines for 

adding new library functions (perhaps by putting them on the web site). 

2. Internet User Interface for ALADDIN : Future versions of 

ALADDIN will most likely operate in a client-server mode over the 

Internet, as shown in figure 7.1. 

[Z] ;it ‘[Z] 
4 

JAVA Interface 

Figure 7.1: Relationship of ALADDIN and JAVA interface 

In this arrangement of computing, analysis problems will be run on a 

high-speed ALADDIN server and displayed on an inexpensive client side 

computer. Using JAVA technology to build the networking software and 

client-side platform independent user interfaces is highly promising. The 

authors want to setup such a JAVA interface on our ALADDIN web page 

and then let people from all over the world try out our program before 

downloading it. The main technical challenge is determining the protocol 

of communication between ALADDIN and the JAVA-based interface. 

3. User-defined Functions : The current version of ALADDIN does not 

permit the use of user-defined functions and procedures in the input file. 

At the beginning, the object of work on ALADDIN is to make the input 

file language relatively simple - otherwise, why not simply code the 

whole problem in C? An easy way of controlling language complexity is 
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to disallow user-defined functions in the input file, and it has done for 

ALADDIN Version 1.0. Now that the matrix and finite element libraries 

are working, this early decision needs to be revised. It is desired to 

combine the finite element analysis with discrete simulated annealing 

optimization algorithms, along the lines proposed by Kirkpatrick.(24) The 

latter could be succinctly implemented if user-defined functions were 

available. The current version of ALADDIN assumes that all user-defined 

variables are global. When user-defined functions are added to 

ALADDIN, notions of scope should also be added to variables (this could 

be implemented via an array of symbol tables). A suite of example 

problems to show how these user-defined functions work is also needed. 

4. Assembling Input from Component Input Files : To promote 

reuse of problem specifications, mechanisms for assembling an input file 

from component input files are needed , as shown in figure 7.2. 

Total Components Future work 

Figure 7.2: Future Input File for ALADDIN 

Designing a graphical interface that would allow a user to incrementally 

assemble problem components is a very challenging research problem. 
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APPENDIX A 

Fiber Elements in ALADDIN 

Fiber elements can be used for modeling of bi-linear materials with flexural and 

shear effects. There are four types of fiber elements in ALADDIN: FIBER_2D, 

FIBERJDS, FIBER3D, and FIBER3DS. The numbers 2 and 3 indicate two- or 

three-dimensional elements, respectively. The difference between the element 

types (FIBER2D, FIBERSD) and (FIBER2DS, FIBER3DS) lies in the shear 

modeling. FIBER-2DS and FIBERSDS can be used to model elements having 

more than one shear property in the sub elements. If the element shear 

properties are homogeneous, use of FIBER2D and FIBER-3D will reduce the 

memory allocation requirements and the required calculation time. 

A number of new language features have been added to ALADDIN for finite 

element computation using fiber elements. First, a neti problem specification 

parameter GaussIntegPts has been created for fiber elements. It defines how 

many Gauss-Lobatto integration sections (besides the two end sections) you 

want for each element. Any integer number between 2 and 10 is valid (the 

default number is 2). 

A fiber element attribute is defined with the ElementAttr 0 (. . .> function. 

Four character string arguments should be specified inside the braces: type, 

section, material, and fiber. The definitions of type, section, and 

material are the same as for the other finite elements. The character string 

for the fiber attribute is defined with FiberAttr (a, “b”) {a . .) function, where 

a is number of fibers in the element, b is a character string for the name of the 
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fiber attribute. The . . e part inside the braces includes definitions of four 

matrices: FiberCoordinate, FiberArea, FiberMaterialAttr, and 

FiberMaterialMap. FiberCoordinate defines the coordinate of each fiber in 

the element cross section. FiberArea defines the cross section area of each 

fiber in the element cross section. FiberMaterialAttr defines different 

material types of fibers. FiberMaterialMap defines the mapping number of 

each fiber’s material type. 

A.1 Two-Dimensional Fiber Elements 

The fiber element has the same degrees of freedom as the traditional plane 

frame element. 

Figure A.l: Schematic of TwoDimensional Fiber Beam/Column Element 

A.l.l 2D Fiber Element with Homogeneous Shear Properties 

FIBER2D is the element type name for a two-dimensional two-node fiber 

element with homogeneous shear properties. 

Section Properties: The element section properties are defined for the whole 

element. The section properties include the element’s total cross-section area, 

area (area may be computed from the section depth times its width or bf). 

The shear-factor for shear effect in the element is 1.2 by default. In order to 
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calculate a mass matrix for dynamic analysis, either unit-weight in the 

section properties, or density in the material properties must be supplied. 

The fiber element supports only lumped mass matrix. 

Material Properties: The element material properties are defined for the 

whole element. The material properties include Poisson’s ratio v (poisson, 0.3 

by default), and density. The material properties in element type FIBEL2D 

also include the shear modulus (G), tangent shear modulus (Gt), and shear 

yield stress (shear-yield). Note that G, Gt and shear-yield represent the 

shear properties for the whole element. Young’s modulus (E), tangent Young’s 

modulus (Et) and yield stress fy (yield) are not defined here; they will be 

defined in fiber attribute. 

Fiber Attribute: FiberCoordinate includes y-coordinate of each fiber in the 

element cross section. FiberMaterialAttr includes the Young’s modulus, 

tangent Young’s modulus, and yield stress. 
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Figure A.2: Example of Two-Dimensional Fiber Element Modeling 

Example: The following script contains the ALADDIN statements needed to 
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model the 4 fiber elements shown in figure A.2 

ABBREVIATED INPUT FILE 

AddElmt( 1, [1,21, “eh%attr” 1; 

/* Define Element Attribute */ 

ElementAttr("elmt-attr")( type = "FIBER 2D". 
section = "se&me" I 
material = "mat-name"; 
fiber = "fib-name"; ) 

/* Define Section Properties */ 

SectionAttr("sec-name") ( area = b*h; 
width = b; depth = h; 
unit-weight = 1 N/m; ) 

/* Define.Material Properties */ 

MaterialAttr("mat-name")( Poisson = nu; G = G; shear-yield = fv; 3 

/* Element is modeled with 4 fibers and equally meshed. */ 

no-of-fiber = 4; 

fiber-coord = [ 3/&h, 1/8*h, -1/8*h, -3/8*h 1; 
fiber-area = I: b*h/4, b*h/4, b*h/4, b*h/4 1; 

/* Element is composed of two materials. */ 

fiber-attr = [ El, E2; 
Etl, Et2; 
fyi, fy2 1; 

/* Fiber No.1 and No.2 are material 1 */ 
/* Fiber No.3 and No.4 are material 2 */ 

fiber-map = c 1, 1, 2, 2 1; 

/* Define Fiber Attribute */ 

FiberAttr( no-of-fiber, "fib-name" > ( FiberMaterialAttr = fiber-attr; 
FiberCoordinate = fiber-coord; 
FiberArea = fiber-area; 
FiberMaterialMap = fiber-map; ) 
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A.12 ‘2D Fiber Element with Different Shear Properties 

FIBER2DS is the element type name for a two-dimensional two-node fiber 

element with different shear properties. 

The section properties and material properties are the same as FIBER2D. One 

exception is that there is now no need to define shear properties in material 

properties, since they will be defined in FiberMaterialAttr matrix. 

Fiber Attribute: FiberMaterialAttr of FIBER2DS includes the Young’s 

modulus, tangent Young’s modulus, yield stress, shear modulus, tangent shear 

modulus, and shear yield stress. 

ABBREVIATEDINPUTFSLE 

/* Element is composed of two different shear properties materials. */ 

fiber-attr = [ El, E2; 
Etl, Et2; 
fyi, fy2; 
Gl, G2; 
Gtl, Gt2; 
fvl, fv2 1; 

A.2 Three-Dimensional Fiber Elements 

The three-dimensional fiber element has the same degrees of freedom as the 

traditional space frame element. 

A.2.1 3D Fiber Element with Homogeneous Shear Properties 

FIBER3D is the element type name for a three-dimensional two-node fiber 

element with homogeneous shear properties. 
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Figure A.3: Schematic of Three-Dimensional Fiber Beam/Column Element 

Section Properties: 

The element section properties defined here are for the whole element. The 

section properties include element’s total cross-section area (area may be 

computed from the section depth times its width or bf). The shear-factor for 

shear effect in the element is 1.2 by default. The torsional constant (.I) has to 

be given in section properties. For dynamic analysis, in order to calculate mass 

matrix, unit-weight in section properties or density in material properties 

must be given. The fiber element supports only a lumped mass matrix. 

Material Properties: 

The element material properties are defined for the whole element. The 

material properties include mass density and Poisson’s ratio v (poisson, 0.3 

by default). The material properties in FIBER3D also include the shear 

modulus (G), tangent shear modulus (Gt), and shear yield stress (shear-yield). 

Note that G, Gt and shear-yield represent the shear properties for the whole 

element. Young’s modulus (E), tangent Young’s modulus (Et) and yield stress 

fy (yield) are not defined here, they will be defined in fiber attribute. 

Fiber Attribute: FiberCoordinate defines both y-coordinate and 
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z-coordinate of each fiber in the element cross section. FiberMaterialAttr 

defines different material types of fibers, it includes the Young’s modulus, 

tangent Young’s modulus, and yield stress. 
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Figure A.4: Example of Three-Dimensional Fiber Element Modeling 

Example: An element is modeled with 8 fiber elements as shown in figure A.4. 

The ALADDIN code needed to construct this section is: 

ABBREVIATEDINPUTFILE 

AddElmt( 1, [1,21, “elmt-attr” 1; 

/* Define Element Attribute */ 

ElementAttr("elmt-attr")< type = "FIBER-3D"; 
section = "see-name" ; 
material = "mat-name"; 
fiber = "fib-name"; 3 

/* Define Section Properties */ 

SectionAttr("sec-name") I area = b*h; 
width = b; depth = h; 
J = 0.2 m-4; 
unit-weight = 1 N/m; 3 

/* Define Material Properties */ 

MaterialAttr("mat-name")< Poisson = au; G = G; shear-yield = fv; ) 



/* Element is modeled with 8 fibers and equally meshed. */ 
/* (4 rows by 2 columns) of fibers per cross section */ 

no-of-fiber = 2*4; 

fiber-coord=[ b/4, -b/4, b/4, -b/4, b/4, -b/4, b/4, -b/41 ; 
3/8*h, 3/8*h, 1/8*h, 1/8*h, -1/8*h, -1/8*h, -3/8*h, -3/8*h]; 

fiber-wea =Cb*h/8, b*h/8, b*h/8, b*h/8, bth/8, b*h/8, b*h/g, b*h/g]; 

/* Element is composed of two materials. */ 

fiber-attr = [ El, E2; 
Etl, Et2; 
fYl. J fy2 1; 

/* Fiber No.1 to No.4 are material 1 */ 
/* Fiber No.5 to No.8 are material 2 */ 

fiber-map = c 1, 1, 1, 1, 2, 2, 2, 2 1; 

/* Define Fiber Attribute */ 

FiberAttr( no-of-fiber, "fib-name" ) { FiberMaterialAttr = fiber-attr; 
FiberCoordinate = fiber-coord; 
FiberArea = fiber-area; 
FiberMaterialMap = fiber-map; ) 

A.2.2 3D Fiber Element with Different Shear Properties 

FIBERSDS is the element type name for a three-dimensional two-node fiber 

element with different shear properties. 

The section properties and material properties are the same as FIBERSD, 

except that there is no need to define shear properties in material properties; 

they will be defined in FiberMaterialAttr matrix. 

Fiber Attribute: FiberMaterialAttr of FIBER-3DS includes the Young’s 

modulus, tangent Young’s modulus, yield stress, shear modulus, tangent shear 

modulus, and shear yield stress. 
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ABBREVLATED INPUT FILE 

/* Element is composed of two different shear properties materials. */ 

fiber-attr = [ El, E2; 
Etl, Et2; 
fyi, fy2; 
Gl, G2; 
Gtl, Gt2; 
fvl, fv2 I; 
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